

Филиал федерального государственного бюджетного образовательного учреждения высшего образования «Астраханский государственный технический университет» в Ташкентской области Республики Узбекистан

Факультет высшего образования

Кафедра «Общая экология и экономика»

Системы глобального мониторинга

Методические указания к практическим занятиям по дисциплине «Системы глобального мониторинга» для магистров направления 05.04.06 «Экология и природопользование»

Составители:

Д.б.н., проф. кафедры «Общая экология и экономика» Волкова И.В.;

Рецензент:

д.б.н. проф. кафедры «Общая экология и экономика» Грушко М.П.

Методические указания знакомят студентов с методами оценки состояния окружающей среды в городах, расчёта интенсивности химического и физического загрязнения городской среды, показателей устойчивого развития урбанизированных территорий, составе и свойствах основных компонентов природной среды, об основных факторах воздействия промышленности и транспорта на природную среду, о принципах и методах защиты среды от негативного антропогенного воздействия.

[©] Филиал ФГБОУ ВО «АГТУ» в Ташкентской области Республики Узбекистан

Содержание

Введение	4
Тема 1 Устойчивое развитие урбанизированных территорий	5
1.1 Экологическое равновесие урбоэкосистем	5
1.2 Эколого-медико-демографический мониторинг	8
Тема 2 Экологические аспекты микроклимата помещений	12
2.1 Показатели качества среды помещений	12
2.2 Регулирование качества воздушной среды зданий	15
2.3 Защита среды зданий от физических факторов	15
Тема 3 Оценка экологического состояния почвенного покрова	
урбоэкосистем	26
Тема 4 Оценка экологического состояния воздушной среды	
урбоэкосистем	28
Тема 5 Оценка экологического состояния водной среды	
урбоэкосистем	32
Тема 6 Шумовое загрязнение в городах	34
Тема 7 Городские отходы	36
Практические работы	41
Тема 1. Экологическое равновесие урбанизированной территории	41
Тема 2. Экология жилой среды. Микроклимат помещений	42
Тема 3. Химическое загрязнение почв города	43
Тема 4. Оценка опасности загрязнения городского воздуха	47
промышленными предприятиями и автотранспортом	
Тема 5. Городские сточные воды	51
Тема 6. Расчёт шумового загрязнения городской зоны	53
Тема 7. Полигоны ТБО и их влияние на окружающую среду	55
Ситуационные задачи	56
Литература	64

Введение

Практическое пособие по выполнению практических работ «Системы глобального мониторинга» предназначено для магистров направления 05.04.06 «Экология и природопользование».

В настоящее время вопросы экологической безопасности городской среды приобретают всё большую актуальность в связи с ростом городов и городского населения, увеличением разнообразия источников трансформации природной среды в городах, необходимостью обеспечения устойчивого развития урбанизированных территорий.

Урбоэкология является комплексной дисциплиной, так как негативные влияния города на природную среду проявляются во всех геосферах и очень разнообразны. Поэтому для её успешного усвоения необходимы базовые знания о составе и свойствах основных компонентов природной среды, об основных факторах воздействия промышленности и транспорта на природную среду, о принципах и методах защиты среды от негативного антропогенного воздействия.

В данном пособии рассматривается применение методов оценки состояния окружающей среды в городах, расчёта интенсивности химического и физического загрязнения городской среды, показателей устойчивого развития урбанизированных территорий. Пособие состоит из 6 практических работ по 6 темам теоретического курса. Структура практического пособия выполнена таким образом, чтобы студент при выполнении практических работ мог изучить основные теоретические положения темы работы и методические аспекты её выполнения. Каждая практическая работа содержит задание и порядок его выполнения. Также даны индивидуальные для каждого студента варианты заданий.

Тема 1 Устойчивое развитие урбанизированных территорий

1.1. Экологическое равновесие урбоэкосистем

Устойчивое развитие города — это рационалистический подход к решению экологических проблем урбоэкосистем, осуществляемый на основе рационального использования всех городских ресурсов, включая геологогеографические особенности городской территории, потенциальные возможности населения, экономики, промышленности, инфраструктуры, в рамках предельно допустимых нагрузок на окружающую среду.

Экологическое равновесие – это состояние природной среды района, при котором обеспечиваются саморегуляция, охрана и воспроизводство основных её компонентов: воздуха, воды, почвы, биоты. Разделяют три уровня экологического равновесия: полный, условный и относительный. экологическое равновесие достигается только случае удовлетворения всех условий, что возможно лишь при благоприятном климате, на достаточно больших территориях с плотностью населения не более 50...60 чел. на 1 км 2 , лесистости не менее 20...30 %. Условное экологическое равновесие наблюдается на территориях с плотностью населения не более 100 чел. на 1 км² при лесистости не менее 20...30 %. Относительное экологическое равновесие достигается при проведении природоохранных мероприятий загрязненной среды вне зависимости от плотности населения и характеристик климата, лесистости. Проектирование района с соблюдением принципа экологического равновесия рекомендуется осуществлять с учетом трех правил:

- 1) мозаичности наряду с природоохранными мероприятиями в пределах одного ландшафта следует целенаправленно перераспределять антропогенные нагрузки;
- 2) иерархичности при большой территории страны достижимо полное экологическое равновесие в пределах больших административных делений; 3) динамичности развитие промышленности, урбанизация, рост населения должны быть сопряжены с прогрессом науки, техники и социальными достижениями.

Одной из основных задач для достижения полного экологического равновесия является определение демографической ёмкости территории.

Демографическая ёмкость территории — максимальное число жителей, потребности которых могут быть обеспечены за счёт ресурсов территории при сохранении экологического равновесия. Демографическая емкость территории Di является величиной переменной и не подразумевает какого-либо нормативного показателя. Демографическую ёмкость Di

определяют как наименьшее из значений частных демографических ёмкостей по территории, воде, рекреационным ресурсам, условиям организации пригородной сельскохозяйственной базы. По наличию территории:

$$D_1 = \frac{T*1000}{H}$$

где D_I — частная демографическая ёмкость, чел.; T — площадь территории, для которой рассчитывается демографическая ёмкость; H — ориентировочная потребность в территории 1000 жителей (H = 20—30 га). По наличию всех водных ресурсов — поверхностных и подземных:

$$D = D_2 + D_3$$

в том числе поверхностных вод

$$D_2 = \sum_{i=1}^{n} \frac{P_i K * 1000}{P}$$

где D_2 — частная демографическая ёмкость, чел.; P_i — минимальный расход воды в i-ом водотоке при входе в район, которую можно изъять для рассматриваемой территории из общего водохозяйственного бассейна, дм 3 /сут; K — коэффициент, учитывающий необходимость разбавления сточных вод (для северных районов K = 0,1, для южных районов K = 0,25), P — нормативная водообеспеченность 1000 жителей, дм 3 /сут (5000 дм 3 /сут).

Минимальный расход воды P_i (дм³/сек) рассчитывается по формуле: $P_i = B * h * v$

где B — минимальная ширина реки (определяется как треть ширины реки в паводок), h — средняя глубина реки в межень, v — скорость течения, м/с.

По наличию подземных вод:

$$D_3 = \sum_{n=1}^n \frac{E_i T_i * 1000}{P}$$

где D_3 — частная демографическая ёмкость, чел.; E_i — эксплуатационный модуль подземного стока i-го участка, дм 3 /сут; T_i — площадь i-го участка территории района, га; P — нормативная водообеспеченность 1000 жителей. По рекреационным ресурсам: для отдыха в лесу

$$D_4 = \frac{TL*0.5*1000}{KHM}$$

где D_4 — частная демографическая ёмкость, чел.; T — площадь территории района, га; L — коэффициент лесистости района, %; 0,5 — коэффициент, учитывающий зелёные зоны городов; доля рекреантов в летний период от числа жителей (K = 0,4); H — ориентировочный норматив потребности 1000 жителей в рекреационных территориях, в среднем H = 2 км 2 ; M — коэффициент распределения отдыхающих в лесу и у воды (M = 0,9 для

умеренного пояса, M = 0,4 для субтропического, тропического пояса). для отдыха у воды

$$D_5 = \frac{2\sum R_i F * 1000}{K_{\Pi} M_1}$$

где D_5 — частная демографическая ёмкость, чел.; R_i — протяжённость іго водотока, пригодного для купания, км; F — коэффициент, учитывающий возможность организации пляжей (в лесной зоне F = 0,3); K_{Π} — ориентировочный норматив потребности 1000 жителей в пляжах, км (K_{Π} = 0,5); M_1 — коэффициент распределения отдыхающих у воды и в лесу (M_1 = 0,15 для умеренного климата, M_1 = 0,4 для жаркого климата).

По условиям создания пригородной сельскохозяйственной базы

$$D_6 = \frac{T_{CX} * q * 1000}{h}$$

где D_6 — частная демографическая ёмкость, чел.; T_{cx} — площадь территории района, благоприятной для ведения сельского хозяйства, тыс. га; q — коэффициент, учитывающий использование сельскохозяйственных запасов под пригородную базу, в среднем $q=0,3;\ h$ — ориентировочный показатель потребности 1000 жителей района в землях пригородной сельскохозяйственной базы, га, h=2000.

Кроме демографической ёмкости территории не менее важны и другие инженерно-экологические характеристики: репродуктивная способность территории, геохимическая активность и экологическая ёмкость. Наибольшее значение из них для оценки уровня экологического равновесия имеет репродуктивная способность территории по кислороду. Воспроизводство кислорода растительным покровом рассчитывается по формуле:

 $\Pi K = 1,45* (S_{nec}*P_{nec} + S_{cx}*P_{cx} + S_{nacr}*P_{nacr} + S_{rop}*P_{rop} \Gamma_{De} \Pi K -$ продуктивность территории по кислороду (т/га в год); S_{nec} – площадь лесов; S_{cx} – площадь сельхозугодий; S_{nacm} – площадь пастбищ; S_{cop} – площадь городских зелёных насаждений; P_{nec} – продуктивность лесов (15 т/га в год); P_{cx} – продуктивность сельхозугодий (6 т/га в год); P_{nacm} – продуктивность пастбищ (5 т/га в год); P_{cop} – продуктивность городских зелёных насаждений (1 т/га в год); 1,45 – коэффициент перевода биопродуктивности к свободному кислороду.

Данная формула учитывает расход кислорода флорой и фауной изучаемой территории.

Расход кислорода населением и хозяйством рассчитывается по формуле:

$$PK = 2ДЕТ * \Pi_{u} + A * \Pi_{n} * 365$$

где ДЕТ — демографическая ёмкость территории; $\Pi_{\text{ч}}$ — потребление кислорода одним человеком (0,26 т/год); 2 — коэффициент, учитывающий потребление кислорода автотранспортом и коммунальными службами; A —

суточный объём выпуска продукции предприятиями (ед./сут); Π_{π} – потребление кислорода при выпуске единицы продукции.

Сравнив значения ПК и РК, можно сделать вывод о достаточности репродуктивной способности территории по кислороду.

1.2. Эколого-медико-демографический мониторинг

Здоровье человека — главная ценность общества. Для количественного описания уровня физического здоровья индивида предложено три основных показателя:

- 1. Уровень физического развития, его гармоничность.
- 2. Функциональное состояние основных органов и систем.
- 3. Резистентность организма по отношению к неблагоприятным факторам окружающей среды (оценивается по частоте и длительности заболеваний за определенный период).

Показатели средней продолжительности жизни и смертности человека являются одними из важнейших критериев общественного здоровья и благополучия территории. Смертность как показатель имеет относительное значение при характеристике состояния здоровья населения и особенно распространенности заболеваний, но она является практически единственным точным критерием благополучия населения на территории в целом.

Цель мониторинга — оценить благополучие человеческой популяции, проживающей на исследуемой территории.

Задачи мониторинга

- 1. Исследовать эколого-демографические показатели и их многолетнюю динамику;
- 2. Охарактеризовать природные, социально-экономические и экологические условия изучаемой территории.
- 3. Сравнить данные эколого-демографических показателей с санитарногигиеническими нормами, характерными для изучаемой территории;
- 4. Прогнозировать развитие изучаемых явлений в пространственно-временной динамике.

Программа мониторинга приведена в табл. 1.

Таблица 1 Структура эколого-медико-демографического мониторинга

Показатели	Источник информации			Оформление	
I. Физико-географическая (природная) характеристика					
1. Географическое	Справочники,		атласы,	Составление карты изучаемой	
положение	географические	карты,	данные	территории и ее окружения	
2. Административное деление территории	местных управлений,	статист администр	гических ративные	Нанесение на карту границ административных делений	

3. Рельеф местности	карты, самостоятельны	е Составление карты рельефа
4. Климато- метеорологические: а) температура воздуха — t° С; б) количество осадков — мм; в) атмосферное давление — мм. рт. столба; г) направление ветра — роза ветров	исследования, климатический карты, данные метеостанций по сезонам года, карты геологического строения, исследования геологических обнажений (если таковые есть в наличии) исследования химических лабораторий и материаль экологических организаций заложение почвенных профилей и	Составление комплексной климатической карты изучаемой территории, по каждому исследуемому показателю составление графиков, диаграмм и письменных характеристик
5. Геологические	материалы краеведческих музеев	Составление карт геологического строения изучаемой местности, описание геологического обнажения (фотографии), наличие полезных ископаемых и минеральных источников (картографирование)
6. Гидрографические: а) реки, озера, водохранилища; б) болота (% заболоченности); в) водоснабжение		Составление гидрографических карт, характеристика источников водоснабжения, картографирование загрязненных участков водных объектов
7. Почвенные		Комплексная характеристика почвенных профилей, составление почвенной карты изучаемой территории и фиксирование мест с наибольшими концентрациями химических элементов
8. Флора и фауна		Составление карт флоры и фауны, описание редких видов растений и животных, сбор гербарного материала, выявление мест концентрации
		рственных растений,

II. Социально-экономическая характеристика

9. Населенные пункты	статистических управлений,	Краткая историческая справка, современная численность
10. Специализация производства: а) промышленность; б) сельское хозяйство 11. Социально-бытовые условия жизни населения, материальная	(количество предприятий), отчеты экологических организаций, опрос,	предприятий пром-ти, с/х, их сравнительная характеристика, выявление источников загрязнения Письменные характеристики условий жизни и
материальная обеспеченность, наличие лечебно-профилактических учреждений		материального обеспечения населения изучаемой территории, установление уровня жизни (благоприятный, удовлетворительный, неблагоприятный)
	III. Демографическая характеристи	ика
12. Общая численность населения изучаемой территории (человек) 13. Плотность населения (человек/км²) 14. Показатель рождаемости (на 1000 чел.) 15. Годовой показатель смертности (на 1000 ч.) 16. Продолжительность жизни (в годах).	Отчеты статистических управлений, собственные исследования (учет по анкетам, общая численность населения/площадь изучаемой территории)	Исследование пятилетней динамики численности населения Картографирование мест с разной плотностью населения Графическое отображение многолетней динамики График и картографирование Диаграмма «Процентное отношение долгожителей к общей численности населения», построение половозрастных пирамид Цифровой материал и
HI V		письменная характеристика
	пика показателей здоровья и заболев	
18. Уровень физического развития населения (дети, подростки и взрослые)	Отчеты учреждений здравоохранения, военкоматов, собственные исследования	Цифровой материал и оценка уровня физического развития человеческой популяции
19. Общая заболеваемость населения (число случаев на 1000 чел.)		Графическое представление многолетней динамики

20. Заболевания (на 1000 чел.): a) кровообращение;	Картографирование (по заболеваниям) и комплексные графики
б) онкология;	
в) органы дыхания;	
г) органы пищеварения	

Здоровье населения в целом и здоровье группы людей (на исследуемой территории) определяется комплексом демографических показателей: рождаемость; смертность; заболеваемость; продолжительность жизни.

Влияние факторов, перечисленных в таблице 1, и критерии их характеристики могут быть разными:

- отсутствие/наличие фактора (+/—);
- 2) количественная характеристика фактора и его сравнение с нормой;
- 3) полуколичественные показатели фактора: балльные (от 1 до 6); сравнительные (плохие, удовлетворительные, хорошие, отличные); комплексные (суммирование оценок факторов для исследуемой территории).

Сбор и обработку всех показателей, используемых в медикодемографическом мониторинге, рекомендуется проводить не реже одного раза в год. За каждый год исследований необходимо составить отчет о проделанной работе (литературные данные, статистика, графики, картографирование). На основе проведенного анализа устанавливаются различного рода взаимосвязи и зависимости (загрязнение — болезнь смертность — продолжительность жизни и рождаемость — напряженная демографическая обстановка и т.д.). На завершающем этапе работы составляется комплексный отчет, содержащий текстовой различные приложения (карты, фотографии, диаграммы, графики, таблицы и т.д.), выводы и рекомендации по проделанной работе, а также заполняется «Эколого-медико-демографический паспорт изучаемой территории».

Вопросы для самоконтроля:

- 1. Что такое устойчивое развитие городов?
- 2. Что такое экологическое равновесие, виды экологического равновесия?
- 3. Принципы достижения экологического равновесия урбанизированных территорий.

- 4. Что такое демографическая ёмкость территории и как она определяется?
- 5. Какие вы знаете инженерно-экологические показатели экологического равновесия?
- 6. Как определяется репродуктивная способность территории по кислороду?
- 7. Расскажите об эколого-демографическом мониторинге.

Тема 2. Экологические аспекты микроклимата зданий2.1. Показатели качества среды помещений

Городской житель подавляющую часть своей жизни проводит в помещениях зданий (1/2-2/3 суток). Поэтому микроклимат помещений оказывает влияние на его самочувствие, работоспособность, а также общее состояние здоровья. Экология жилой среды включает соблюдение требований экологической безопасности; ресурсосбережение и использование замкнутых циклов природопользования. Регулирование качества жилой среды осуществляется уже на стадии проектирования здания. На градостроительном уровне факторами, влияющими на качество жилой среды, являются: природно-техногенные, микроклиматические условия и экологическое состояние территории строительства здания. Таким образом, застройщики обязаны соблюдать санитарно-гигиенические требования по физическим, химическим, биологическим показателям качества среды.

В масштабе отдельного здания, при сдаче его в эксплуатацию и в условиях эксплуатации, качество жилой среды определяется следующими факторами: организацией жилого пространства; ограждений; качеством строительных, отделочных материалов, мебели; работой систем отопления и вентиляции, инженерного и санитарно-технического оборудования и т.п.

Среда помещений жилых и общественных зданий должна отвечать действующим санитарно-гигиеническим нормам: ПО параметрам микроклимата; по содержанию химических и биологических веществ в воздухе помещений; по уровню воздействия физических факторов; по уровню радиационного фона и активности радона; по качеству питьевой воды. Однако, система комплексной оценки качества жилой среды до настоящего времени не разработана. Важное значение имеют мероприятия по сокращению потребления энергии в здании. Первое направление основано на экономии энергии от традиционных источников и достигается при помощи специальных архитектурно-планировочных решений. Второе направление – использование возобновляемых видов энергии: солнечной, ветровой, гидро- и геотермальной, биохимической (например, потребление последние годы получают развитие интегрированные системы автоматического контроля и управления функционированием жилой среды здания, так называемые технологии «умного дома». Качество среды помещений жилых и общественных зданий зависит от совокупности внутренних и внешних факторов. Выделяют воздействие материальных биологических), поллютантов (химических И также физических загрязнителей (шума, вибрации, ЭМП). Метеорологические параметры микроклимата помещений (СанПиН 2.1.2.1002-00 и ГОСТ 30494-96). Метеорологические условия помещений определяются температурой воздуха, результирующей температурой, относительной влажностью и скоростью движения воздуха. Результирующая температура – это комплексный показатель радиационной температуры и температуры воздуха помещения. Радиационная температура — это осредненная по площади температура внутренних поверхностей ограждений помещения и отопительных приборов.

Соблюдение нормируемых микроклиматических обеспечивается энергоэффективностью здания, т.е. его теплозащитой и теплопотреблением. На стадии проектирования теплоэффективность здания мероприятий: обеспечивается комплексом архитектурных объемнопланировочных, конструктивных и инженерно-технических. градостроительном уровне учитывается характеристика природноклиматических условий региона. Архитектурные и объемнопланировочные мероприятия определяются ориентацией дома относительно сторон света, наличием затеняющих деревьев и сооружений. В холодном климате должна быть использована возможность нагрева помещений солнцем. Кроме того, они должны быть защищены от охлаждения потоками преобладающих ветров. Например, для северных условий целесообразна планировка квартир с односторонней ориентацией. Это позволит снизить теплопотери в здании, обусловленные инфильтрацией холодного воздуха через окна и неплотности наружных ограждений. В жарком климате, наоборот, помещения должны быть защищены от солнца. Здесь используется охлаждающий эффект, обеспечиваемый методами планировки жилого пространства. К объемно-планировочным мероприятиям, позволяющим экономить тепло в домах, относится использование домов с широким корпусом. Так, при увеличении ширины здания с 12 до 18 м может снижение удельного расхода тепла 18%. достигнуто конструктивным мероприятиям относятся: повышение теплозащитных свойств (или повышение сопротивления теплопередаче) внешних ограждений помещения – стен, крыш, цокольных перекрытий, а также применение окон с остеклением. Инженернотехническими трехили четырехрядным мероприятиями является оснащение зданий системами отопления автоматическим терморегулированием, приточной вентиляцией с подогревом воздуха в зимнее время, электроподогрев пола комнат. Энергоэффективность зданий повышают с помощью устройств по пассивному использованию солнечной энергии, систем утилизации тепла вытяжного воздуха и т.п. Применяют приборы по учету и регулированию энергии.

Инсоляция помещения. Нормативная продолжительность инсоляции на определенные календарные периоды с учетом географической широты местности регламентируются СанПиН 2.2.1/2.1.1.1076-01.

Естественное освещение помещений. Помещения с постоянным пребыванием людей должны иметь естественное освещение, которое подразделяется на боковое (проемы в стене), верхнее (на крыше) и комбинированное. Естественное освещение изменяется в течение дня в зависимости от времени суток, года и погоды. Поэтому в качестве нормируемой величины применяется не абсолютная величина освещенности, а относительная, выражаемая коэффициентом естественного освещения (КЕО) - отношение естественной освещенности E, создаваемой светом неба в некоторой точке заданной плоскости внутри помещения, к одновременному значению наружной горизонтальной освещенности E0, создаваемой светом полностью открытого небосвода, %:

$$e_{_{\mathrm{H}}} = \left(\frac{E}{E_{_{0}}}\right) * 100$$
, здесь $e_{_{\!H}} - \mathrm{KEO}$.

Требования к освещению помещений регламентированы СНиП 23-0595. Значения $e_{\scriptscriptstyle H}$ зависят от характера зрительной работы. При естественном освещении выполняются работы, имеющие оценку средней, малой и грубой точности. При этом $e_{\scriptscriptstyle H}$ имеет значения соответственно: при верхнем и комбинированном освещении — 4; 3 и 3%; при боковом освещении — 1,5; 1 и 1%.

Нормированные значения КЕО, для зданий, располагаемых в районах России разного светового климата, определяется по формуле

$$e_N = e_{\scriptscriptstyle \rm H} m_N$$

где N \square номер группы административного района, определяемый обеспеченностью естественным светом (на территории России выделяется 5 групп административных районов); m_N – коэффициент светового климата.

Коэффициент m_N зависит от номера группы административного района и ориентации световых проемов по сторонам горизонта (C, CB, C3, B, 3, CЮ, В3, Ю, ЮВ, Ю3). Коэффициент принимает значения: $m_{1...5} = 0,7...1,2$.

При проектировании естественного освещения определяется расчетное значение КЕО e_p . При выполнении условия $e_p \square e_N$ проектируемая площадь световых проемов считается достаточной.

При боковом освещении и при отсутствии затенения значение e_p в расчетной точке определяется по формуле

$$e_p = \varepsilon_{\scriptscriptstyle \mathrm{H}}^{\scriptscriptstyle \mathrm{G}} \beta_a r_{\scriptscriptstyle \mathrm{O}} \tau_{\scriptscriptstyle \mathrm{O}}/k_{\scriptscriptstyle \mathrm{S}}$$

где \mathcal{E}_{H}^{6} П значение KEO, сздаваемое прямым светом участков неба, видимых через световые проемы; \Box_a — коэффициент ориентации световых проемов, учитывающий ресурсы естественного света по кругу горизонта (или учитывающий неравномерность яркости облачного неба); r_0 — коэффициент светоотражения, учитывающий повышение KEO за счет света, отраженного от поверхностей помещения (потолка, стен) и подстилающего слоя на открытом горизонте; \Box_0 — общий коэффициент светопропускания световых проемов (учитывает потери света в материале остекления, в переплетах светопроемов, в несущих конструкциях, за счет светозащитных устройств); κ_3 — коэффициент запаса заполнения светового проема.

2.2. Регулирование качества воздушной среды зданий

Внутренние показатели качества среды зданий можно разделить на три группы. Первая группа показателей связана с жизнедеятельностью людей. Вторая – с генерацией загрязнителей непосредственно в помещении. Третья – с поступлением загрязняющих веществ в здания из внешней среды.

Определенный вклад в загрязнение жилой среды вносит сам человек, выделяя антропотоксины. Дыхание, отделение пота и другие процессы, связанные с метаболической активностью человеческого организма, приводят к повышению влажности, появлению запахов.

Выделение вредных летучих веществ из строительных и отделочных материалов (СанПиН 2.1.2.729-99, СанПиН 2.1.2.1002-00) является основным видом загрязнения воздуха помещений. Скорость поступления вредных веществ в воздух помещения относительно невелика (возрастает при повышении температуры, влажности). Но так как строительные материалы являются постоянным источником, концентрация поллютантов может достигать опасных значений. Ими являются: формальдегид, фенол, сероводород, стирол, оксид азота (IV), бензол, толуол, ксилол, этилбензол, аэрозоли металлов: свинца, ртути, многие из которых высокотоксичны и относятся к 1-му и 2-му классам опасности.

2.3. Защита среды зданий от физических факторов

Защита от шума. Шумы в помещении жилых и общественных зданий можно разделить на внутренние и внешние. К внутренним шумам относятся бытовые шумы и шумы, создаваемые при работе инженерного и санитарнотехнического оборудования (вентиляционных установок, лифтов, насосов, кондиционеров, электродвигателей). Бытовые шумы создают люди,

населяющие здание, при разговорах, пении, игре на музыкальных инструментах.

Шум в помещениях жилых и общественных зданий нормируется допустимыми октавными уровнями звукового давления для постоянного шума, а также эквивалентными (по энергии) уровнями звука для непостоянного шума (табл. 2). Нормируемые максимальные уровни звука превышают нормируемые эквивалентные уровни на 15 дБА.

Октавные уровни звукового давления в помещениях от всех источников шума определяются с помощью акустических расчетов. Требуемое снижение октавных уровней звукового давления $\Box L$, д \Box , в помещениях вычисляется как

$$\Delta L = L_{\Sigma} - L_{\text{доп}}$$

где L_{\square} – октавный уровень звукового давления в расчетной точке от всех источников шума, $L_{\partial on}$ – допустимый октавный уровень звукового давления.

 Таблица 2

 Допустимые уровни звукового давления и уровни звука в помещениях

Aoni emilie i bos	Уров			ового	-	ни звуг	ка и эн	свивале	нтные
	давле	ения,	дБ,	В	уровн	и звука	а, дБА		
	октан	вных	пол	посах					
Название	часто	PΤ	co						
	средн	негеоме	тричес	кими					
	частотами, Гц								
	63	125	250	500	1000	2000	4000	8000	16000
Помещения лечебно-	<u>59</u> *	<u>48</u>	<u>40</u>	<u>34</u>	<u>30</u>	<u>27</u>	<u>25</u>	<u>23</u>	<u>35</u>
профилактических	51	39	31	$\frac{2}{24}$	$\frac{20}{20}$	17	14	13	$\frac{\underline{ss}}{25}$
учреждений	<i>J</i> 1				20	1,		10	20
Жилые комнаты квартир,									
лечебно-оздоровительных	<u>63</u>	<u>52</u>	<u>45</u>	<u>39</u>	<u>35</u>	<u>32</u>	<u>30</u>	<u>28</u>	<u>40</u>
учреждений, детских	55	44	35	29	25	22	20	18	30
дошкольных учреждений									
Помещения									
образовательных	63	52	45	39	35	32	30	28	40
учреждений									
Номера гостиниц и	<u>67</u>	<u>57</u>	<u>49</u>	<u>44</u>	<u>40</u>	<u>37</u>	<u>35</u>	<u>33</u>	<u>45</u>
комнаты общежитий	59	48	40	34	30	27	25	23	35
Помещения учреждений	75	66	59	54	50	47	45	44	55
общественного питания	13	00	39	34	30	47	43	44	33
Помещения									
учреждений торговли,									
аэропортов, вокзалов,	79	70	63	59	55	53	51	49	60
предприятий бытового									
обслуживания									

^{*}Прим.: Дробью обозначено: вверху для времени суток с 7 до 23 ч, внизу □ с 23 до 7 ч.

Основными методами снижения шума в помещениях зданий до уровня допустимых величин являются метод звукопоглощения и метод звукоизоляции.

Суть метода звукопоглощения заключается в поглощении энергии звуковых волн звукопоглощающими материалами. При этом энергия звука переходит в тепловую энергию. Звукопоглощающие материалы и конструкции подразделяются: на волокнисто-пористые поглотители (войлок, минеральная вата, фетр, акустическая штукатурка); мембранные поглотители (пленка, фанера); резонаторные поглотители (резонатор Гельмгольца); комбинированные поглотители. Свойство материалов поглощать звук характеризует коэффициент звукопоглощения \Box , который равен отношению количества поглощенной звуковой энергии E_{no2n} к общему количеству падающей энергии E_{nad} ($\alpha = E_{norn}/E_{nad}$). Если энергия звука поглощается, то

 $\Box = 1$, если отражается, то $\Box = 0$. В табл. 3 приведены звукопоглощающие характеристики некоторых материалов.

Таблица Коэффициент звукопоглощения материалов

3

	-
Материал	Коэффициент звукопоглощения 🛘
Бетон	0,015
Стекло	0,02
Дерево	0,1
Войлок	0,30,5
Открытое окно (для сравнения)	1,0

Метод звукоизоляции основан на отражении звуковой волны, падающей на ограждение (экран). Звукоизоляция ограждающей конструкции помещения от воздушного шума оценивается индексом изоляции воздушного шума $I_{\mathfrak{g}}$ (или Rw), от ударного шума \square индексом приведенного уровня ударного шума $I_{\mathfrak{g}}$ (или $I_{\mathfrak{g}}$). Допустимые величины $I_{\mathfrak{g}}$ лежат в пределах 40...60 дБ, а $I_{\mathfrak{g}}-50...70$ дБ. При проектировании новых ограждающих конструкций производится расчет их звукоизоляции. Окончательная оценка звукоизоляции дается на основании натурных испытаний. Величины $I_{\mathfrak{g}}$ и $I_{\mathfrak{g}}$ новых внедряемых ограждающих конструкций должны быть не ниже нормативных.

Защита от вибрации. Вибрация – это механические колебания системы с упругими связями, возникающие при периодическом смещении центра тяжести какого-либо тела от положения равновесия и/или при периодическом изменении формы тела. Внутренними источниками вибрации в помещениях являются: инженерно-техническое оборудование зданий и бытовые приборы (лифты, вентиляционные системы, насосные, пылесосы, холодильники, стиральные машины, котельные). К внешним источникам вибрации относятся: городской рельсовый транспорт и автомотосредства, передвижные и стационарные промышленные установки.

Общая вибрация передается на тело человека через опорные поверхности. Диапазон частот общей вибрации устанавливается в виде октавных или 1/3 октавных полос со среднегеометрическими частотами: 2; 4; 8; 16; 31,5; 63 Гц. При частоте больше 20 Гц вибрации сопровождаются звуком, ниже 20 Гц — инфразвуком. Основными параметрами вибрации являются среднеквадратические значения виброскорости r и виброускорения a или их логарифмические уровни L_r и L_a , измеряемые в октавных и 1/3 октавных полосах частот. Логарифмические уровни виброскорости L_r , дБ, определяют по формуле

$$L_r = 20\log(\frac{r}{5*10^{-8}}),$$

где r — среднеквадратическое значение виброскорости, м/с; $5\square 10^{-8}$ — опорное значение виброскорости, м/с, соответствующее среднеквадратичной колебательной скорости при стандартном пороге звукового давления $2\square 10^{-5}$ Па.

Логарифмические уровни виброускорения L_a , дБ, определяют по формуле $L_\alpha = 20 \log(\frac{\alpha}{1*10^{-6}}),$

где a - среднеквадратическое значение виброускорения, м/с²; $1\square 10^{-6}$ - опорное значение виброускорения, м/с².

Для интегральной оценки вибрации в качестве параметра используют корректированный уровень вибрации — это одночисловая характеристика вибрации, определяемая как результат энергетического суммирования уровней вибрации в октавных полосах частот. Корректированное значение виброскорости и виброускорения U или их логарифмические уровни Lv измеряются с помощью корректирующих фильтров или вычисляются по формулам:

где U_i , $^L v_i$ — среднеквадратическое значение виброскорости или виброускорения (или их логарифмические уровни) в i-й частотной полосе; n — число частотных полос (1/3 или 1/1 октав) в частотном диапазоне; K_i , $^L \kappa_i$ — весовые коэффициенты для i-й частотной полосы для абсолютных значений или их логарифмических уровней.

Для интегральной оценки изменяющейся во времени вибрации в качестве параметра используют эквивалентный (по энергии) корректированный уровень вибрации – это корректированный уровень вибрации, такое постоянной времени которая имеет ВО среднеквадратичное корректированное виброускорения значение или виброскорости, что и данная непостоянная вибрация в течение определенного интервала времени. Эквивалентное корректированное значение виброскорости или виброускорения ($U_{{}^{9\!\kappa\theta}}$) или их логарифмический уровень $L_{U_{2KB}}$ измеряется или вычисляется по формулам:

$$U_{\text{\tiny SKB}} = \sqrt{\frac{\sum_{i=1}^{n} U_{i}^{2} * t_{i}}{T}} \qquad \qquad L_{U_{\text{\tiny SKB}}} = 10 \log(\frac{1}{T} \sum_{i=1}^{n} 10^{0.1 L_{i}} * t_{i})$$

где U_i — корректированное по частоте значение контролируемого параметра виброскорости (r, L_r) , м/с, или виброускорения (a, L_a) , м/с²; t_i —

время действия вибрации, ч; $T = \prod_{i=1}^{n} I_i$, где n — общее число интервалов действия вибрации.

Воздействие вибрации на организм человека (частотой < 20 Гц) приводит к развитию утомления, нарушению пространственной ориентации, пищеварительным расстройствам, головокружению. Наиболее опасной является вибрация в диапазоне 6...9 Гц, совпадающие с частотами колебаний внутренних органов человека. В результате воздействия вибрации может возникнуть резонанс, который может привести к механическим повреждениям и разрыву внутренних органов. Допустимые уровни вибрации в помещениях жилых и общественных зданий регламентируются СН 2.2.4/2.1.8.566-96 и СанПиН 2.1.2.1002-00.

Методы виброзащиты. Для уменьшения вибрации от самого источника используют методы виброизоляции и вибродемпфирования. Виброизоляция основана на отражении вибрации в устройствах, называемых амортизаторами. Выделяют резиновые, резинометаллические, пружинные, пневматические, гидравлические, комбинированные и др. амортизаторы. Вибродемпфирование — процесс поглощения вибрации покрытиями из упруговязких материалов с большим внутренним трением (рис. 1). Также используется также метод виброгашения, заключающийся в создании колеблющейся системы с динамической частотой, равной частоте возмущающей силы, но с реакциями, противоположными ей.

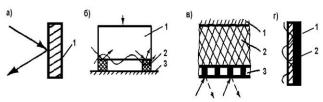


Рис. 1. Шумовиброзащитные конструкции

а \square звукоизолирующее ограждение (1-стена, перегородка); б \square виброизолятор (1-стена, перегородка); в \square звукопоглощающая облицовка (1-стена, перетородена); в \square звукопоглощающая облицовка (1-стена, 1-cтena); г \square вибродемпфирующая конструкция (1-стена) нерфорированное покрытие); г \square вибродемпфирующая конструкция (1-стена) нист, 2-стena) вибродемпфирующее покрытие)

Предусмотрены специальные объемно-планировочные мероприятия:

• не допускается размещение лифтов, мусопроводов над, под и смежно с жилыми комнатами;

- непосредственно под квартирами нельзя размещать котельные, бойлерные, водопроводные, насосные помещения;
- в жилых зданиях нельзя размещать АТС, трансформаторные подстанции, административные учреждения, кафе и столовые с числом мест более 50.

Конструктивные меры защиты от шума и вибрации инженерного оборудования состоят в следующем:

- лифтовые и вентиляционные шахты выполняются в виде самонесущих конструкций, опирающихся на самостоятельный фундамент;
- устанавливаются звукоизоляционные прокладки в местах пересечения лифтовых, вентиляционных шахт и трубопроводов с междуэтажными перекрытиями;
- несущие вентиляционные шахты и оборудование машинных отделений устанавливают на перекрытия через виброамортизаторы.

Градостроительным методом защиты здания от внешней вибрации является метод защиты расстоянием — соблюдение необходимого расстояния от здания до источника вибрации (транспортных магистралей, трамвайных путей и железных дорог).

Защита от ультразвука. Источники ультразвука генерируют ультразвуковые колебания в диапазоне частот от 18 кГц до 100 МГц и выше. Источниками ультразвука бытового назначения (до 100 кГц) являются: сигнализация, стиральные машины, охранная приспособления отпугивания животных, устройства для резки различных материалов и др. Источником ультразвука В медицинских учреждениях диагностическое оборудование, физиотерапевтическая, хирургическая По способу распространения ультразвуковых колебаний аппаратура. выделяют:

• контактный способ – ультразвук распространяется при соприкосновении рук или других частей тела человека с источником ультразвука; □ воздушный способ – ультразвук распространяется по воздуху.

В соответствии с требованиями СанПиН 2.2.4/2.1.8.582-96 допустимые уровни воздушного и контактного ультразвука при использовании источников бытового назначения не должны превышать 75 дБ. Нормируемые допустимые уровни инфразвука в жилых помещениях приведены в табл. 4.

Таблица 4

Нормы инфразвука					
	Уровни звукового давления, дБ, в октавных	Общий уровень			
Объект	полосах со среднегеометрическими частотами,	звукового			
	Гц	давления, дБ			

	2	4	8	16	
Жилые и общественные	75	70	65	60	75
здания					

Ограждения зданий обладают низкой инфразвукоизоляцией. Кроме того, уровни инфразвука в помещениях могут возрастать из-за явления резонанса. Мероприятия по снижению уровней инфразвука включают разработку инфразвукоизолирующих конструкции ограждений помещений.

Защита от электромагнитных полей (ЭМП). В последнее время наблюдается резкое увеличение количества и видов новой техники и устройств, эксплуатация которых сопровождается излучением электромагнитной энергии. Нормативы уровней электромагнитных излучений установлены в СанПиН 2.2.2.542-96.

Конструктивные мероприятия по эащите от ЭМП. Ограждающие конструкции зданий могут быть экранами от внешних ЭМП. Основной характеристикой действия электромагнитного экрана является эффективность экранирования Э:

$$\theta = E/E\theta$$
 $\theta = H/H\theta$

где E_3 , H_3 и E, H_3 напряженности электрического и магнитного полей в какой-либо точке экранированного пространства при наличии и отсутствии экрана. Эффективность экранирования может быть выражена в децибелах:

$$\vartheta_{AB} = 20 \log \vartheta$$

Строительные конструкции (стены, перекрытия зданий), а также отделочные материалы (краски и др.) могут либо поглощать, либо отражать электромагнитные волны. Эффективность экранирования некоторых строительных конструкций и материалов приведена в табл. 5.

Таблица 5 Эффективность экранирования ЭМП строительными конструкциями и материалами, дБ

Конструкция или материал	Сантиметровые волны	Метровые волны
Кирпичная стена толщиной 70 см	20	12
Внутренняя оштукатуренная стена толщиной 15 см	1012	22,5
Сосновая доска толщиной 30 мм	22,5	11,5
Оконное стекло толщиной 3 мм	13	
Окно с целой одинарной рамой	46	24
Окно с двойной рамой	68	35

К объемно-планировочным мероприятиям следует отнести функциональное зонирование жилища. В этом случае возможно рассредоточение приборов с электромагнитным излучением и др. вредными воздействиями. Например, размещение компьютера в кабинете, аудио- и видеотехники в гостиной. При этом важную роль играет увеличение объема жилого пространства.

Организационные мероприятия по защите от ЭМП сводятся к рациональному размещению источников и приемников электромагнитного излучения в помещении и ограничению времени пребывания в ЭМП. Приведем несколько примеров. Не рекомендуется размещать электроприборы в углах помещений железобетонных зданий. В этом случае уровень излучения возрастает («уголковый отражатель»).

Для снижения воздействия электростатических полей рекомендуется: использовать мониторы персональных ЭВМ с антистатическим покрытием экрана либо с заземленным защитным экраном-фильтром; выдерживать расстояние до телевизора с экраном диагональю до 36 см не менее 1 м и не менее 2 м до телевизора с экраном диагональю 51 см; проводить влажную уборку; использовать антистатические аэрозоли и ионизаторы воздуха. На крышах зданий, где установлены передающие антенны ЭМИ РЧ, должна иметься соответствующая маркировка с обозначением границ, где пребывание людей при работающих передатчиках запрещено.

Защита среды зданий от радиации. Радиационное поражение живых организмов связано с воздействием излучения коротких длин волн — гаммалучей. При взаимодействии ионизирующего излучения с веществом происходит его ионизация, то есть образование положительных и отрицательных ионов. Если веществом является биологическая ткань, под воздействием ионов происходят изменения в клетках организма, приводящие к онкологическим заболеваниям.

Ионизирующее излучение возникает при распаде ядер радиоактивных Известно 1500 природных и искусственных веществ радионуклидов, обладающих радиоактивностью. Радиоактивность латинского radio – излучаю, activus □ действенный) – способность некоторых атомных ядер самопроизвольно превращаться в другие ядра с испусканием заряженных частиц. Источниками облучения людей являются природные радионуклиды в грунтовых основаниях зданий и в стройматериалах, рентгеновская диагностика, АЭС. При этом 70% общей дозы облучения население развитых стран получает в помещениях жилых, общественных и производственных зданий. Радиационный фон в помещениях зданий обусловлен причинами: гамма-излучением двумя естественных радионуклидов, находящихся в строительных материалах; присутствием в воздухе помещений радиоактивных газов радона, торона и дочерних продуктов их распада. К радионуклидам, содержащимся в строительных материалах, относятся уран-238, торий-232 с дочерними продуктами их распада и калий-40. Газообразными радионуклидами уранового и ториевого рядов являются газы радон (Rn-222) и торон (Rn-220). Гамма-излучение вызывает внешнее, а радиоактивные газы □ внутренне и внешнее облучение людей. В странах СНГ ежегодно от «радонового» рака умирает 15 тыс. человек.

Характеристикой радионуклида является его активность A — это мера радиоактивности какого-либо количества радионуклида, находящегося в данном энергетическом состоянии в данный момент времени: $\mathbf{A} = \frac{dN}{dt}$,

где dN – число ядерных превращений (распавшихся ядер) за промежуток времени dt. Единица измерения активности в системе СИ – беккерель (1 Бк=1 расп./с).

Удельной (объемной) активностью называется отношение активности A радионуклида в веществе к массе m (объему V) вещества:

$$A_m = A/m$$
 $A_V = A/V$

Единица измерения удельной активности — ${\rm F}\kappa/\kappa \Gamma$. Единица объемной активности — ${\rm F}\kappa/{\rm M}^3$.

Радиоактивные изотопы радона Rn-222 (газ радон) и Rn-220 (газ торон) распадаются по цепочкам с образованием короткоживущих изотопов радона. Эквивалентной равновесной объемной активностью дочерних продуктов изотопа радона Rn-222 ($\mathcal{P}OA_{Rn}$) и Rn-220 ($\mathcal{P}OA_{Tn}$) называется взвешенная сумма объемных активностей короткоживущих дочерних продуктов изотопов радона:

где A_i — объемные активности дочерних изотопов радона.

Эквивалентная доза $H_{T,R}$ — это поглощенная доза в органе или ткани, умноженная на соответствующий взвешивающий коэффициент для данного вида излучения, W_R :

$$H_{T,R} = W_R * D_{T,R}$$

где W_R — взвешивающий коэффициент для излучения R, для \square - излучения $W_R = 1$; $D_{T,R}$ — средняя поглощенная доза в органе или ткани T. Поглощенная доза представляет собой энергию ионизирующего излучения, переданную веществу (органу или ткани). Единицей эквивалентной дозы является зиверт (1 3в = 1 Дж/кг).

При воздействии различных видов излучения эквивалентная доза определяется как сумма эквивалентных доз для этих видов излучения:

$$H_T = \sum_R H_{T,R}$$

Эффективной дозой E (зиверт 3в) называется величина, используемая как мера риска возникновения отдаленных последствий облучения всего тела человека отдельных его органов И тканей учетом ИХ Представляет собой радиочувствительности. сумму произведения эквивалентной дозы в органах и тканях на соответствующие коэффициенты:

$$E = \sum_{T} W_{T} H_{T}$$

где W_T – взвешивающий коэффициент для органа или ткани, учитывающий их различную чувствительность к радиации (табл. 6).

 ${\bf T} {\bf a} {\bf б} {\bf л} {\bf u} {\bf u} {\bf a} \ {\bf 6} \\ {\bf B} {\bf 3} {\bf B} {\bf e} {\bf m} {\bf u} {\bf a} {\bf o} \\ {\bf o} \\ {\bf o} \\ {\bf o} \\ {\bf o} \\ {\bf o} \\ {\bf o} {\bf o} {\bf o} {\bf o} {\bf o} {\bf o} \\ {\bf o} {\bf o} {\bf o} {\bf o} {\bf o} \\ {\bf o} {\bf o} {\bf o} {\bf o} \\ {\bf o} {\bf o} {\bf o} {\bf o} \\ {\bf o} {\bf o} {\bf o} {\bf o} \\ {\bf o} {\bf o} \\ {\bf o} {\bf o} {\bf o} \\ {\bf o} \\ {\bf o} {\bf o} \\ {\bf o$

	,	1 1 '	
гонады	0,20;	грудная железа	0,05;
костный мозг	0,12;	печень	0,05;
толстый кишечник	0,12;	пищевод	0,05;
легкие	0,12;	щитовидная железа	0,05;
желудок	0,12;	кожа	0,01;
мочевой пузырь	0,05;	клетки костных поверхностей	0,01;
		остальное	0,05

Оценка радиационного качества строительных материалов проводится по эффективной удельной активности $A_{•φφ}$, представляющей собой сумму удельных активностей естественных радионуклидов: радия (Ra-226), тория (Th-232) и калия (K-40): $A_{•φφ} = A_{Ra} + 1.3A_{Th} + 0.09A_{K}$.

Значения эффективной удельной активности радионуклидов $A_{9\phi\phi}$ в некоторых строительных материалах приведены в табл. 7.

Наиболее высокие удельные активности радионуклидов имеют породы вулканического происхождения (гранит, туф, пемза), а наиболее низкие □ осадочные, карбонатные породы (мрамор, известняк).

В настоящее время в России действуют нормы радиационной безопасности НРБ -99. Согласно требованиям этих норм в строящихся и реконструируемых жилых и общественных зданиях могут использоваться строительные материалы (I класса), в которых $A_{9\phi\phi} \le 370$ Бк/кг; в дорожном строительстве в пределах территории населенных пунктов и зон перспективной застройки, а так же при возведении производственных

сооружений могут использоваться материалы (II класса), в которых $A_{\phi\phi} \leq 740$ Бк/кг.

Таблица 7 Эффективная удельная активность радионуклидов в строительных материалах

Наименование строительного материала	$A_{\ni \varphi \varphi}$,
	Бк/кг
Материалы природного происхождения	
Песок	36
Гравий	59
Глина	102
Щебень:	
гранитный	127
песчаный и смешанный	72
известковый	22
Материалы промышленного происхождения	$A_{\ni \varphi \varphi}$,
	Бк/кг
Известь	19
Кирпич силикатный	34
Бетон	58
Цемент	69
Кирпич керамический	133
Керамзит	140
Побочные продукты и отходы	$A_{9\varphi\varphi},$
	Бк/кг

Колчеданные	огарки	(химическая	26
промышленность)			38
Шлак конверторны	60		
Фосфогипс (химиче	еская промышл	енность)	62
Хвосты (горнообога	атительные ком	ибинаты)	65
Шлак (цветная мета	153		
Шлак доменный (че	194		
Шлак (ТЭЦ)	1 71	,	204
Зола ТЭЦ			224
Фосфорные шлаки	(химическая пр	омышленность)	

В соответствии с НРБ-99 мощность эффективной дозы гаммаизлучения не должна превышать мощность дозы на открытой местности более чем на 0,3 мкЗв/ч при проектировании новых зданий и 0,2 мкЗв/ч в эксплуатируемых зданиях.

Вопросы для самоконтроля:

1. Какими показателями характеризуется микроклимат помещений?

- 2. Мероприятия по защите среды зданий от различных загрязнителей.
- 3. Экологические требования к строительным и отделочным материалам.
- 4. Методы звукоизоляции и звукопоглощения, примеры.
- 5. Методы защиты среды зданий от внутренней и внешней вибрации.
- 6. Какими причинами обусловлено радиационное загрязнение среды зданий?
- 7. Современные экологические представления о жилом доме.

Тема 3. Оценка экологического состояния почвенного покрова урбоэкосистем

Геохимический фон — среднее содержание химического элемента в почвах по данным изучения статистических параметров его распределения. Геохимических фон является региональной или местной характеристикой почв и пород.

Геохимическая аномалия — участок территории, в пределах которого статистические параметры распределения химического элемента достоверно отличаются от фона.

Зона загрязнения — геохимическая аномалия, в пределах которой содержание загрязняющих веществ достигает концентраций, оказывающих неблагоприятное влияние на здоровье человека.

Уровень загрязнения характеризуется величиной *коэффициента концентрации Ксі*:

$$K_{C_i} = \frac{C_i}{C_{\Phi_i}}$$

где C_i – концентрация загрязняющего вещества в почве, C_{ϕ^i} – фоновая концентрация загрязняющего вещества, мг/кг почвы.

Загрязнение обычно бывает полиэлементным, и для его оценки рассчитывают *суммарный показатель загрязнения*, представляющий собой аддитивную сумму превышений коэффициентов концентраций над фоновым уровнем:

$$Z_{C} = \sum_{i=1}^{n} K_{C_{i}} - (n-1)$$

где Kc_i – коэффициент концентрации элемента, n – число элементов с Kc > 1.

Величину суммарного показателя загрязнения почв используют для оценки *уровня опасности загрязнения* территории города. Значения суммарного показателя загрязнения до 16 соответствуют допустимому

уровню опасности для здоровья населения; от 16 до 32 – умеренно опасному; от 32 до 128 – опасному; более 128 – чрезвычайно опасному.

Для оценки выявленных геохимических аномалий в городах, а также для оценки эколого-геохимических изменений, происходящих в результате антропогенных процессов, В. А. Алексеенко предложены показатели абсолютного (ПАН) и относительного (ПОН) накопления химических элементов. ПАН показывает, какая масса химического элемента накопилась в результате природных или техногенных процессов на единице площади в концентрациях, превышающих региональное фоновое содержание. При отсутствии фонового содержания можно брать кларковое или величину ПДК. ΠAH выражается в т/км 2 . Он вычисляется как отношение рассчитанного содержания химического элемента, накопившегося в результате техногенного химического загрязнения в химической аномалии, к площади этой аномалии. В связи с тем, что значения фоновых содержаний элементов в почве неодинаковы, абсолютная величина техногенного накопления загрязнителей будет отражать степень реальной опасности загрязнителя экологического состояния экосистем и здоровья человека. Для преодоления этой проблемы был введён показатель относительного накопления (ПОН). ПОН чрезвычайно важен как при оценке воздействия определённого элемента на организмы, так и при сравнении такого воздействия разными элементами в конкретной ландшафтно-геохимической обстановке. Он представляет собой отношение показателя абсолютного накопления элемента к фоновому (кларковому) его содержанию в почве:

$$\Pi O H = \frac{\Pi A H}{C_{\Phi}}$$

Расчёт ПОН позволяет определить элементы, на загрязнение окружающей среды которыми следует обратить первоочередное внимание как при проведении мероприятий по экологической реабилитации почв, так и при медико-профилактической работе.

Геохимическое изучение почв в городе на регулярной основе позволяет получить пространственную структуру загрязнения селитебных территорий и выявить участки, проживание на которых сопряжено с наибольшим риском для здоровья населения.

Вопросы для самоконтроля:

- 1 Что такое геохимический фон, геохимическая аномалия, зона загрязнения?
- 2 Какие показатели используются для оценки химического загрязнения почвенного покрова?

3 Как оценивается уровень опасности загрязнения территории города? 4 В чём суть показателя относительного накопления химических элементов и для чего он был введён?

Тема 4. Оценка экологического состояния воздушной среды урбоэкосистем

Ухудшение качества воздуха городов ведет к различным осложнениям здоровья населения, гибели биоты, загрязнению почв, водных объектов, к повреждению памятников культуры, конструкций зданий и сооружений. Главными источниками загрязнения воздуха в городах являются промышленные предприятия и автомобильный транспорт.

Категория опасности предприятия используется для характеристики изменений качества атмосферы через выбросы, осуществляемые стационарными источниками с учётом их токсичности.

КОП определяется через массовые характеристики выбросов в атмосферу:

$$KO\Pi = \sum_{i=1}^{m} KOB_i = \sum_{i=1}^{m} (\frac{M_i}{\Pi \not \square K_i})^{a_i}$$

где m — количество загрязняющих веществ, выбрасываемый предприятием; KOB_i — категория опасности i-го вещества, M^3/c ; M_i — масса выбросов i-й примести в атмосферу, M^2/c ; H/K_i — среднесуточная H/K_i — го вещества в атмосфере населённого пункта, M^2/M^3 ; A_i — безразмерная константа, позволяющая соотнести степень вредности i-го вещества с вредностью SO_2 (табл. 8).

Таблица 8

Значения коэффициента а								
Класс опасности вещества	2	3	4					
a_i	1,7	1,3	1,0	0,9				

Значения КОП рассчитывают при условии, когда $\frac{M_i}{\Pi Д K_i} > 1$.

$$\frac{M_i}{\Pi \text{ри}} < 1$$
 значения КОП не рассчитываются (КОП = 0).

Для расчета КОП при отсутствии ПДК $_{CC}$ (среднесуточная ПДК) используют значения ПДК $_{MP}$ (максимальная разовая ПДК) или уменьшенные в 10 раз значения ПДК $_{P3}$. Для веществ, по которым отсутствует информация о ПДК или ОБУВ (ориентировочно безопасный уровень вещества), значения КОП приравнивают к их массе выбросов.

Предприятия по величине категории опасности делят в соответствии с условиями, приведёнными в таблице 9.

Категории опасности предприятий

Таблица 9

Категория опасности предприятия		Значения КОП
I	$\geq 31,7\cdot 10^6$	
II	$\geq 31,7\cdot 10^4$	
III	$\geq 31,7\cdot 10^3$	
IV		$< 31.7 \cdot 10^3$

Например: при величине выброса диоксида азота 3,521 т/год категория опасности вещества будет равна

$$KOB_{NO_2} = \left(\frac{3.521*31.7}{0.04}\right)^{1.3} = 30155 = 3.02*10^4 \, (M^3/c)$$

Массовый выброс загрязняющих веществ транспортным средством (далее – TC) при движении по данной улице M_{ij} рассчитывается по формуле.

$$M_{ij} = m_{ij} * L_{\text{общ}}^N * 10^{-6}$$

где тіј – приведённый пробеговый выброс, г/км

$$m_{ij} = m_i * K_{ri} * K_{ti},$$

где m_i — пробеговый выброс i-го загрязняющего вещества TC, г/кг; K_{ri} — коэффициент, учитывающий изменение выбросов загрязняющих веществ при движении по территории населённых пунктов; K_{ti} — коэффициент, учитывающий влияния технического состояния TC на массовых выброс i-го загрязнителя; $L^N_{oбщ}$ — суммарный годовой пробег TC по данной улице, который является функцией времени, интенсивности движения и скорости TC, км.

Суммарный сезонный пробег по улице рассчитывается:

$$L_{\text{общ}}^N = \sum_{t}^n L_{\text{ces}}^N = \sum_{t}^n v_{\text{авт}} t_g N_{\text{ces}}^N$$

где $v_{aвm}$ — скорость движения TC; N^{N}_{ces} — число TC, прошедших по улице за сезон; t_g — время движения TC по данной улице, которое рассчитывается по формуле:

$$t_g = \frac{L}{v_{\mathtt{abt}}}$$
 где L — длина

улицы, км.

Таким образом, суммарный годовой пробег ТС будет рассчитываться по формуле:

$$L_{ ext{oбщ}}^N = \sum_{k=1}^n L * N_{ ext{ces}}^N$$

Число TC, прошедших по данной улице за сезон, определяется суммированием

$$N_{\text{ces}}^N = t * (N_{\text{y}} + N_{\text{д}} + N_{\text{B}} + N_{\text{H}}) * n$$

где t – время, 6 часов; n – количество дней в сезоне.

Значения пробегового выброса і-го загрязняющего вещества от ТС приведены в таблице 10.

Категория опасности ТС (КОА) рассчитывают по аналогии с категорией опасности предприятия:

KOA =
$$\sum_{i=1}^{m} \left(\frac{M_i}{\Pi Д K_i}\right)^{a_i}$$

Таблица 10 Пробеговый выброс для различных типов автотранспорта

Тип		Пробеговый	Коэс	ффициент	Приведён.	
TC	Примеси	выброс, г/км	Kri	Kti	Kni	пробег. выброс, г/км
ыe	일 CO 13,0		0,87	1,72	_	19,8
(OB)	NO_2	1,5	0,94	1,0	_	1,4
Легковые	СН	2,6	0,92	1,48	_	3,5
5	SO ₂	0,076	1,15	1,15	_	0,1
	Pb	0,025	1,15	1,15	_	0,03
e	CO	52,6	0,89	2,0	0,68	63,7
)BbI	NO ₂	5,1	0,79	1,0	0,67	2,7
Грузовые бензиновые	СН	4,7	0,85	1,83	0,87	6,4
Гр	SO_2	0,16	1,15	1,15	1,19	0,3
	Pb	0,023	1,15	1,15	1,19	0,04
le sie	CO	2,8	0,95	1,6	0,68	2,9
Грузовые дизельные	NO ₂	8,2	0,92	1,0	0,82	6,2
	СН	1,1	0,93	2,1	0,76	1,6
	SO ₂	0,96	1,15	1,15	1,2	1,5
	Сажа	0,5	0,8	1,9	0,54	0,4
a Si CO		67,1	0,89	1,4	0,9	75,2
Автобусы	NO_2	9,9	0,79	1,4	0,89	9,7
3ME	СН	5,0	0,85	1,4	0,96	5,7
Ав	SO ₂	0,25	1,15	1,1	1,3	0,4
	Pb	0,037	1,15	1,1	1,3	0,1
3bi bie	CO	4,5	0,95	1,4	0,89	5,3
бус 15ни	NO ₂	9,1	0,92	1,4	0,93	10,9
Автобусы	СН	1,4	0,93	1,4	0,92	1,7
A	SO ₂	0,9	1,15	1,1	1,3	1,5
	Сажа	0,8	0,8	1,4	0,75	0,7

Помимо вредных выбросов, образуемых при сжигании топлива, эксплуатация TC приводит к выбросам пыли (M_n) в результате взаимодействия автомобиля и дороги. Степень загрязнение атмосферы в результате этого процесса можно показать через категорию опасности дороги (КОД):

$$KOД = \frac{M_n}{\Pi Д K_n} = \frac{M^y V^y}{\Pi Д K}$$

где M^y- содержание пыли в воздухе улицы, V^y- объём воздуха, в котором рассеяна пыль.

Количество пыли, выбрасываемой N-ым количеством автомобилей i-го класса, рассчитывается по формуле:

$$M^y = \psi_i * S_{Ai} * N_i$$

где S_A — площадь проекции автомобиля на поверхность дороги, м 2 ; ψ — сдуваемость пыли, мг/(см 2 с), табл. 11; N_i — интенсивность движения автомобилей i-го класса.

 V^{y} рассчитывается как произведение площади улицы ($S_{yлицы}$) на высоту приземного слоя атмосферы (H) (3 метра): $V^{y} = S_{yлицы}*H$.

Таблица 11 Значения удельной сдуваемости и средней площади проекции на поверхность дороги для различных классов TC

Тип АТС	Значения удельной сдуваемости, см ² с	Средняя площадь проекции на поверхность дороги, м ²
Легковые автомобили	240	7
Грузовые автомобили	516	25
Автобусы	541	30

В качестве комплексного показателя, использующегося для определения опасности улицы от её загрязнения автотранспортом, применяется такой показатель, как категория опасности улицы (КОУ): KOY = KOA + KOД

Категория опасности территориального производственного комплекса (КОГ) рассчитывается как сумма категорий опасности предприятий (КОП) и улиц (КОУ), расположенных в пределах этого комплекса:

$$KO\Gamma = \sum_{i=1}^{n} KO\Pi_i + \sum_{k=1}^{m} KOY_k$$

Вопросы для самоконтроля

- 1 Что такое категория опасность предприятия и как она определяется?
- 2 Какова методика расчета загрязняющих веществ автомобильным транспортом при движении по данной улице?
- 3 Как рассчитываются КОА, КОД и КОУ?
- 4 Что такое КОП и КОГ?

Тема 5. Оценка экологического состояния водной среды урбоэкосистем

Не все ливневые и дренажные сточные воды, попадают в водный объект. Часть атмосферных осадков перехватывается верхними ярусами растительного покрова. Для учёта потерь поверхностных сточных вод используется коэффициент стока (ψ). Для дождевых и снеговых сточных вод эта величина зависит от характеристик поверхности водосборной территории (табл. 12).

Таблица 12 Коэффициент стока атмосферных осадков для различных городских территорий

Вид водосборной	Величина коэффициента стока (ψ)					
территории	дождевой сток	снеговой сток				
Застроенные территории	0,6	0,6				
Незастроенные территории	0,3	0,6				
Парки, гравийные покрытия	0,3	0,6				
Водонепроницаемые поверхности	0,7	0,9				
Грунтовые поверхности	0,2	0,6				
Газоны, зелёные насаждения	0,1	0,2				

Значение коэффициента стока для всего водосборного бассейна рассчитывается:

$$\Psi = \sum_{i=1}^{n} \alpha_i \psi_i$$

где α_i — весовые коэффициенты, равные по величине отношению площади, занимаемой данным видом покрытия, к общей водосборной площади; ψ_i — коэффициенты стока для разных видов покрытий.

Объём стока атмосферных осадков за год рассчитывается по формуле:

$$W = 10 * \Psi * F * H_{, M^3/\Gamma O Д},$$

где Ψ — коэффициент стока дождевых или талых вод; F — площадь водосборной территории, га; H — слой осадков за тёплый или холодный период года соответственно, мм.

Объём поливомоечных сточных вод определяется по формуле:

$$W = 10 * \Psi * F_m * m * k_{M^3/\Gamma O II}$$

где m — расход воды на мойку единицы площади, π/m^2 ; k — количество моек в году; F_m — площадь обрабатываемых покрытий, га; Ψ — коэффициент стока поливомоечных сточных вод.

Значения всех параметров, входящих в данную формулу, определяются согласно следующим нормативам:

- на мойку 1 м^2 площади расходуется от 1,3 литров воды;
- k = 100;
- F_m составляет 20% от всей территории города; $\Box \Psi = 0.6$.

В этом случае объём поверхностного стока уменьшается. Расчёт количества задержанных атмосферных осадков производится по абсолютным нормам задержания (табл. 13).

 Таблица 13

 Нормы задержания атмосферных осадков лесной растительностью

	Слой задержанных атмосферных осадков (Нз), мм												
Вид растител Месяцы						Ы							
ьности	1	2	3	4	5	6	7	8	9	10	11	12	В
													год
Хвойный	10	10	10	18	19	20	25	22	17	16	12	10	189
лес													
Лиственн ый лес	1	1	1	4	10	11	14	12	8	6	4	2	79

Слой выпавших атмосферных осадков корректируется на величину задержанных осадков с учётом соотношения площадей, занятых различными видами деревьев, и всей водосборной площади. Объём дождевых или снеговых сточных вод определяется в этом случае по формуле:

$$W = 10 * \Psi * F_m * (H - H_s)_{M^3/\Gamma O J,}$$

где Ψ – коэффициент стока; F – площадь водосборной территории, га; H и H3 – слои выпавших и задержанных осадков соответственно, мм.

Общий объём поверхностного стока с водосборной территории за год определяется как сумма составляющих

$$W = W_{\rm II} + W_{\rm C} + W_{\rm IIM}$$

где $W_{\mathcal{I}}$, $W_{\mathcal{C}}$ и $W_{\mathcal{I}M}$ — объёмы дождевых, снеговых и поливомоечных сточных вод соответственно.

Суммарное значение годового выноса веществ с поверхностным стоком рассчитывается как

$$G = W_{\mathrm{J}} * C_{\mathrm{J}} + W_{\mathrm{C}} * C_{\mathrm{C}} + W_{\mathrm{\PiM}} * C_{\mathrm{\PiM}}$$

где $C_{\text{Д}}$, $C_{\text{С}}$ и $C_{\text{ПМ}}-$ концентрации веществ в дождевых, снеговых и поливомоечных сточных водах соответственно, г/м³.

Вопросы для самоконтроля

1. Как рассчитывается объём сточных вод, образовавшихся в результате выпадения атмосферных осадков?

- 2. Какие нормативы, влияющие на объём стока, существуют для работ по мойке городских территорий?
- 3. Как изменяется поверхностный сток при наличии крупных лесных массивов?
- 4. Как рассчитывается суммарное значение годового выноса веществ с поверхностным стоком?

Тема 6. Шумовое загрязнение в городах

Шумовое загрязнение — это превышение естественного уровня шума и изменение шумовых характеристик (периодичности, силы звука и т. д.) в воздушной среде урбоэкосистем. Главным источником шумового загрязнения городской территории являются транспортные потоки. Исходным параметром для расчета эквивалентного уровня звука, создаваемого в какой-либо точке на территории города потоком средств автомобильного транспорта (включая автобусы и троллейбусы), является шумовая характеристика потока $L_{\text{Аэкв.}}$ в дБА, определяемая по ГОСТу 2044485 на расстоянии 7,5 м от оси ближней полосы движения транспорта:

$$L_{\text{Аээк}} = 10 \log Q + 13,31 \log V + 41 \log (1+r) + \Delta L_{A_1} + \Delta L_{A_2} + 15$$
, где Q - интенсивность движения, ед./ч; V - средняя скорость потока, км/ч; r - доля средств грузового и общественного транспорта в потоке, %, (к грузовым относятся автомобили грузоподъемностью 1,5 т и более); ΔL_{A1} - поправка, учитывающая вид покрытия проезжей части улицы или дороги, дБА, (при асфальтобетонном покрытии $\Delta L_{\text{A1}} = 0$, при цементобетонном покрытии $\Delta L_{\text{A1}} = +3$ дБА); ΔL_{A2} - поправка, учитывающая продольный уклон улицы или дороги, дБА, определяемая по таблице 14.

Для дневного времени расчет следует проводить, исходя из средней часовой интенсивности движения Q в течение 4-х часового периода с наибольшей интенсивностью движения транспорта.

Таблица 14 Поправка ΔL A2, учитывающая продольный уклон улицы или дороги

Продольный	ΔL _{A2} , дБА						
уклон улицы	Доля средо	ств грузового и	общественного	транспорта в по	отоке, %		
или дороги, %	0	5	20	40	100		
2	0,5	1	1	1,5	1,5		
4	1	1,5	2,5	2,5	3		
6	1	2,5	3,5	4	5		
8	1,5	3,5	4,5	5,5	6,5		
10	2	4,5	6	7	8		

Ожидаемый эквивалентный уровень звука $L_{\text{Аэкв.тер.2}}$, дБА, создаваемый потоком TC в расчетной точке, определяется по формуле

$$L_{\rm Aээк. Tep.2} = L_{\rm Aэкв} - \Delta L_{\rm 3} + \Delta L_{\rm 4}, \label{eq:Lassker}$$

где ΔL_{A3} - снижение уровня шума в зависимости от расстояния от оси ближайшей полосы движения транспорта до расчетной точки, дБА, определяемое по рисунку 1; ΔL_{A4} - поправка, учитывающая влияние отраженного звука, дБА (табл. 15) в зависимости от отношения $h_{p.т.}/B$, где $h_{p.т.}$ - высота расчетной точки над поверхностью территории; в общем случае высота расчетной точки принимается $h_{p.т.}$ = 12 м; В - ширина улицы (между фасадами зданий), м.

Таблица 15 Поправка ΔLA4, учитывающая влияние отражённого звука

Тип застройки	Односторонняя		Į	Івустороння	Я			
застроики			отношение h _{р.т.} /В					
		0,05 0,25 0,4 0,55 0,7						
ΔLа4, дБА	1,5	1,5 2,0 2,5 3,0 3,5						

Для определения уровня шума в расчётной точке от двух или более транспортных магистралей шумовую характеристику потоков средств автомобильного транспорта $L_{\text{Аэкв.}}$ и эквивалентный уровень звука у фасада здания $L_{\text{Аэкв.тер.2}}$ следует определять раздельно для каждой магистрали. Полученные при этом эквивалентные уровни звука в расчётной точке должны быть просуммированы по энергии:

$$L_{A \ni \text{K.Tep.2}} = 10 \log(\sum_{i=1}^{n} 10^{0.1 L_{A \ni \text{SK}_i}})$$

Шумовую характеристику потоков средств автомобильного транспорта и эквивалентный уровень звука у фасада здания при размещении между полосами проезжей части разных направлений движения бульваров и пешеходных аллей также следует определять раздельно для каждого направления движения.

Вопросы для самоконтроля

- 1. Как рассчитывается шумовая характеристика транспортного потока?
- 2. Как рассчитывается ожидаемый эквивалентный уровень звука в расчётной точке?
- 3. Как суммируются эквивалентные уровни звука от разных источников?

Тема 7. Городские отходы

Твёрдые бытовые отходы (ТБО) и промышленные отходы — непригодные для дальнейшего использования пищевые продукты, предметы быта и производства, подлежащие обезвреживанию и размещению (захоронению).

Морфологический, фракционный, химический состав ТБО зависит от благоустройства жилого фонда, сезона года, климатического пояса и факторов. Основные методы множества других обезвреживания переработки ТБО можно разделить на три группы: утилизационные, ликвидационные и смешанные. По технологическому принципу различают биологические, термические, химические, механические и смешанные методы. Наибольшее распространение в России получили складирование на полигонах или санкционированных свалках (ликвидационный механический), сжигание (ликвидационный термический), компостирование (утилизационный биологический). Наиболее распространенными сооружениями по размещению отходов являются полигоны ТБО - это предназначенные комплексные природоохранные сооружения, обезвреживания, размещения (захоронения) отходов. Полигоны должны обеспечивать защиту от загрязнения отходами атмосферного воздуха, почвы, поверхностных и грунтовых вод, препятствовать распространению грызунов, насекомых и болезнетворных микроорганизмов.

Размеры земельных участков, отводимых под полигон, рассчитываются из условия 0,02 - 0,05 га на 1000 т ТБО. Теоретическая вместимость полигона на расчетный срок эксплуатации (15 - 30 лет) определяется по формуле:

$$V_{\Pi} = (Y_1 + Y_2) (H_1 + H_2) T K_2 / 4K_1 1$$

где Y_1 , Y_2 – удельные годовые нормы накопления отходов в первый и последний годы эксплуатации полигона, т/чел.; H_1 , H_2 — численность населения, обслуживаемого полигоном, на первый и последний годы эксплуатации, чел.; T – расчетный срок эксплуатации полигона, годы; K_1 – коэффициент уплотнения ТБО, равный отношению плотности ТБО после уплотнения к плотности ТБО, доставляемых мусоровозами на полигон (зависит от массы грунтоуплотняющей машины и толщины изолирующего слоя); K_2 – коэффициент, учитывающий увеличение объема полигона за счет устройства наружных и внутренних изолирующих слоев (зависит от изолирующего материала — грунта, забираемого из основания полигона, или привозного).

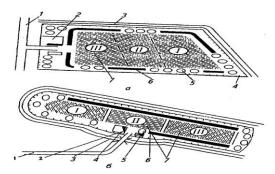


Рис. 4. Схема размещения основных сооружений полигона (Хомич, 2002) а □ при соотношении длины и ширины полигона 2:1; б □ при соотношении более 3:1; 1 □ подъездная автодорога; 2 □ хозяйственная зона; 3 □ нагорный канал; 4 □ ограждение; 5 □ зеленая зона; 6 □ кавальер минерального грунта для изоляции слоев ТБО; 7 □ участки складирования отходов; I, II, III □ очереди эксплуатации

Удельная годовая норма накопления ТБО по объёму за 2-й год эксплуатации определяется из условия ежёгодного роста её по объёму на 3 %, то есть

$$\mathbf{y}_2 = \mathbf{y}_1 + 1,03T$$

Коэффициент К₁, учитывающий уплотнение ТБО в процессе эксплуатации полигона за весь срок Т определяется по таблице 16 с учётом массы бульдозера или катка.

Возможные значения коэффициента К1

Таблица 17

	<u> </u>	
Масса бульдозера или катка, т	Полная проектируемая высота полигона, м	K 1
3-6	20-30	3,0
12-14	менее 20	3,7
12-14	20-30	4,0
20-22	50 и более	4,5

Коэффициент К₂, учитывающий объём изолирующих слоёв грунта, в зависимости от общей высоты, определяется по табл. 17. **Таблица 17 Возможные** значения коэффициента К₂

Высота, м	5,25	7,50	9,75	12-15	16-39	40-50	Более 50
К2	1,37	1,27	1,25	1,22	1,20	1,18	1,16

Площадь участка складирования ТБО определяется по формуле:

$$S_{y.c.} = 3V_{\Pi} / H$$

где H – проектируемая высота полигона, м. Требуемая площадь полигона составит:

$$S = 1.1 S_{y.c.} + S_{don}$$

где $S_{\text{доп}}$ – площадь участка хозяйственной зоны и площадки мойки

контейнера (в среднем $S_{\text{поп}} = 1,0$ га).

Нормируемый размер ССЗ полигона составляет 500 м, а для санкционированных свалок — 1000 м. Создание полигонов и СЗЗ вокруг них требует отчуждения больших земельных площадей (40-200 га), на территории земель промышленного назначения. Полигоны нельзя размещать ближе 15 км от аэропортов. Не допускается размещение полигонов на территории 1-го и 2-го поясов зон санитарной охраны водоисточников, в местах массового отдыха населения и оздоровительных учреждений.

При выборе участка для размещения полигона учитывают гидрологические условия местности. Грунтовые воды на участке полигона должны залегать на глубине более 2 м. Нельзя использовать под полигоны болота, затопляемые территории, районы геологических разломов.

Предпочтение отдается участкам залегания водоупорных пород – глин, суглинков.

На количественную характеристику выбросов загрязняющих веществ с полигонов отходов влияет большое количество факторов, среди которых: климатические условия; рабочая (активная) площадь полигона; сроки эксплуатации полигона; количество захороненных отходов; мощность слоя складированных отходов; соотношение количеств завезённых бытовых и промышленных отходов; морфологический состав завезённых отходов; влажность отходов; содержание органической составляющей в отходах; содержание жиров, углеводов и белков в органике отходов; технология захоронения отходов.

Продуктом анаэробного разложения органической составляющей отходов является биогаз, представляющий собой в основном смесь метана и углекислого газа. Система сбора биогаза состоит из нескольких рядов вертикальных колодцев (газодренажных скважин) или горизонтальных траншей. Последние заполнены песком или щебнем и перфорированными трубами.

Удельный выход биогаза за период его активной стабилизированной генерации при метановом брожении применительно к абсолютно сухому веществу отходов определяется по уравнению:

$$Q = 10^{-4}R(0.92\text{W} + 0.62\text{V} + 0.34\text{B})$$

где Q — удельный выход биогаза за период его активной генерации, кг/кг отходов; R — содержание органической составляющей в отходах, %; \mathcal{K} — содержание жироподобных веществ в органике отходов, %; V — содержание углеводоподобных веществ в органике отходов, %; E — содержание белковых веществ в органике отходов, %. E — содержание белковых забираемых проб отходов.

В реальных условиях отходы содержат определённое количество влаги, которая сама по себе биогаз не генерирует. Следовательно, выход биогаза, отнесённый к единице веса реальных влажных отходов, будет меньше, чем отнесённый к той же единице абсолютно сухих отходов в $10^{-2} (100 - W)$ раз, так как в весовой единице влажных отходов абсолютно сухих отходов, генерирующих биогаз, будет всего $10^{-2} (100 - W)$ от этой единицы (здесь W – фактическая влажность отходов, %, определённая анализаторами проб отходов).

С учётом вышесказанного уравнение выхода биогаза при метановом брожении реальных влажных отходов принимает вид:

$$Q_W = 10^{-6}R(100 - W)(0.92W + 0.62Y + 0.34B)$$

 $^{-2}$ (100 – W) учитывает, какова доля абсолютно где

сомножитель 10

сухих отходов в общем количестве реальных влажных отходов.

Количественный выход биогаза за год (кг/т отходов в год), отнесённый к одной тонне отходов, определяется по формуле:

$$P_{\rm yd} = \frac{Q_W}{t_{\rm cop}}$$

где $t_{cбp}$ — период полного сбраживания органической части отходов, лет, опрелеляемый по приближённой эмпирической формуле:

$$t_{\rm cop} = \frac{10248}{T_{\rm тепл} * t_{\rm cp. тепл}^{0,301966}}$$

где $t_{cp.men\pi}$ — средняя из среднемесячных температура воздуха в районе полигона твёрдых бытовых и промышленных отходов (ТБО и ПО) за тёплый период года (t > 0), °C; $T_{men\pi}$ — продолжительность тёплого периода года в районе полигона ТБО и ПО, дни; 10248 и 0,301966 — удельные коэффициенты, учитывающие термическое разложение органики.

Для определения плотности биогаза, кг/м³, применяется формула:

$$ho_{ ext{6.г.}} = 10^{-6} \sum_{i=0}^n C_i$$

концентрация i-го компонента в биогазе, мг/м

Используя полученные анализами концентрации компонентов и биогазе и рассчитанную его плотность, определяется весовое процентное содержание этих компонентов в биогазе:

$$C_{ exttt{Bec.}i} = 10^{-4} rac{C_i}{
ho_{ exttt{f.r.}}}$$

По рассчитанным количественному выходу биогаза за год, отнесённому к 1 тонне отходов и весовым процентым содержаниям компонентов в биогазе определяются удельные массы компонентов, кг/тонн отходов в год, по формуле:

$$P_{\text{yd},i} = \frac{C_{\text{Bec},i} * P_{\text{yd}}}{100}$$

Органические вещества, содержащиеся в отходах, обладают разной скоростью разложения. Органическая составляющая отходов состоит из «пассивного» (не генерирующего или очень медленно генерирующего) и «активного» (генерирующего) органического вещества. Для расчёта величин выбросов подсчитывается количество активных отходов, стабильно генерирующих биогаз, с учётом того, что период стабильного активного выхода биогаза в среднем составляет 20 лет и что фаза анаэробного стабильного разложения органической составляющей отходов наступает спустя в среднем 2 года после захоронения отходов, то есть отходы, завезённые в последние два года, не входят в число активных.

Таким образом, если полигон функционирует менее 20 лет, то учитываются все отходы, за исключением завезённых в последние 2 года, а если полигон функционирует более 20 лет, то учитываются только отходы, завезённые в последние 20 лет, за исключением отходов, ввезённых в последние 2 года.

Максимальные разовые выбросы i-го компонента биогаза с полигона, г/с, определяются по формуле:

$$M_i = 0.01 * C_{\text{Bec}.i} * M_{\text{cym}},$$

где

$$M_{\text{сум}} = \frac{P_{\text{уд}} \sum D}{86.4 * T_{\text{тепл}}}$$

где ΣD — количество активных, стабильно генерирующих биогаз отходов, т; T_{menn} — продолжительность тёплого периода года в районе полигона ТБО, дней.

Биогаз образуется неравномерно в зависимости от времени года. При отрицательных температурах процесс «мезофильного сбраживания» (до 55 0 C) органической части ТБО и ПО прекращается, происходит т. н. «законсервирование» до наступления более тёплого периода года ($t_{cp.мес.} > 0$ 0 C).

Приведённая формула для вычисления максимального разового выброса i-го компонента справедлива только в тёплый период года ($t_{cp.мес.} > 8$ 0 C). При обследовании в более холодное время ($0 < t_{cp.меc.} \le 8$ 0 C), что нецелесообразно хотя бы из-за дополнительных погрешностей измерения, в формуле следует применять повышающий коэффициент неравномерности образования биогаза 1,3.

С учётом коэффициента неравномерности валовые выбросы i-го загрязняющего вещества с полигона, т/год, определяются по формуле:

$$G_{\text{сум}} = M_{\text{сум}} \left(\frac{a * 365 * 24 * 3600}{12} + \frac{b * 365 * 24 * 3600}{12 * 1,3} \right) * 10^{-6}$$

$$G_{i} = 0.01 * C_{\text{Bec.},i} * G_{\text{cym}}$$

где a и b — периоды, соотвественно, тёплого и холодного периода года в месяцах (a при $t_{cp.мес.} > 8$ 0 C, b — при $0 < t_{cp.мес.} \le 8$ 0 C).

Вопросы для самоконтроля

- 1. Что такое твёрдые бытовые отходы?
- 2. Полигон ТБО и его характеристики.
- 3. Какие факторы влияют на выбросы загрязняющих веществ с полигонов?
- 4. Методика расчета выброса биогаза с полигона ТБО и отдельных его компонентов.

Практические работы

Тема 1. Экологическое равновесие урбанизированной территории

Цель работы: определение показателей экологического равновесия урбанизированных территорий.

Материалы и оборудование: микрокалькулятор, ситуационный план или таблицы исходных данных.

Задание: рассчитать демографическую ёмкость территории и инженерно-экологические показатели экологического равновесия территории. Предложить рекомендации по увеличению демографической ёмкости территории. Ход работы:

- 1. Описать методику рассчёта показателей экологического равновесия;
- 2. Рассчитать демографическую ёмкости территории по данным таблицы 18;
- 3. Определить факторы, в наибольшей степени ограничивающие демографическую ёмкость территории, предложить мероприятия по её увеличению;
 - 4. Определить репродуктивную способность территории по кислороду, сделав вывод о её достаточности или недостаточности, спрогнозировать дальнейшее экономическое и экологическое развитие территории.

Таблица 18 Варианты заданий для расчёта демографической ёмкости территории

Вариант	Площадь территории, тыс. га	Ширина реки в паводок, м	Глубина реки, м	Скорость течения реки, м/с	Эксплуат. модуль подз. стока с 1 га, дм ³ /сут	Коэффициент лесистости	Длина водотоков, пригодных для купания [,] км	Площадь для ведения с/х, тыс. га
1	113	70	5	0,9	0,929	0,45	22	0,35
2	532	130	4	1,2	0,122	0,32	17	0,45
3	216	95	6	0,9	0,55	0,52	18	0,30
4	98	84	8	0,5	1,786	0,63	12	0,25
5	291	96	7	0,9	0,696	0,25	21	0,52
6	436	123	4	1,0	0,499	0,36	18	0,48
7	315	97	9	1,1	0,611	0,54	16	0,31
8	281	85	5	0,8	0,587	0,46	19	0,32
9	454	89	2	0,8	0,245	0,37	14	0,47
10	273	89	6	0,9	0,44	0,39	13	0,54
11	395	78	8	0,8	0,332	0,54	19	0,29
12	427	109	9	1,0	0,316	0,63	25	0,33
13	785	105	5	1,3	0,155	0,48	27	0,47

14	654	97	4	1,5	0,243	0,49	28	0,30
15	285	96	8	1,2	0,54	0,52	29	0,41

Таблица 19 Варианты заданий для расчёта репродуктивной способности территории по кислороду

Вариант	S _{nacm} , TbIC. Fa		S _{nec} , Thic. Fa		<i>A</i> , тыс. ед./сут	Пп, т/ед.	Вариант ,	Snacm		S_{nec} , Thic. Fa	$S_{c/x}$, Tbic. Fa	<i>A</i> , тыс. ед./сут	Пп, т/ед.
1	5	35	52	14	36,8	0,3	9	16	46	24	8,5	32,5	0,5
2	2	24	59	13	8,5	0,2	10	7	59	17	36,7	29,3	0,1
3	12	26	105	17	9,6	0,4	11	10	27	29	20,9	36,8	0,3
4	21	52	23	19	22,6	0,3	12	6	102	34	67	42,5	0,2
5	3	38	58	12	36,2	0,2	13	11	52	95	29	56,2	0,3
6	8	45	57	11	25,6	0,2	14	12	73	57	18	96,5	0,1
7	4	58	89	10	36,2	0,3	15	4	41	82	23,5	47,6	0,2
8	5	39	95	9,0	35,9	0,4	16	25	58	109	39,7	23,5	0,4

Прим.: значения ДЕТ (демографическая ёмкость территории) рассчитайте согласно таблице 18.

5. Сделать вывод.

Тема 2. Экология жилой среды. Микроклимат помещений

Задача 1. Температура сухого термометра станционного психрометра +25°C, а влажного +22°C. Оцените температурно-влажностные условия в жилом помещении.

Задача 2. В каком из цехов предпочтительней микроклимат? В первом цехе температура воздуха +38°C, относительная влажность воздуха 70%, скорость движения воздуха 0,3 м/с. Во втором цехе температура воздуха +39°C, Относительная влажность воздуха 35%, скорость движения воздуха 1,2 м/с.

Задача 3. Площадь учебного кабинета для учащихся младших классов 45 м², застекленная поверхность одного окна составляет 2,5 м². В кабинете 3 окна. Дайте экологическую оценку площади кабинета, если в нем занимается 35 учащихся. Рассчитайте СК и оцените естественную освещенность в учебном кабинете.

Задача 4. Размеры школьного класса составляет: ширина 7 м, длина 8 м. Рассчитайте, сколько люминесцентных ламп мощностью 60 Вт (ламп

накаливания мощностью 100 Вт) необходимо использовать для оптимального освещения класса.

Задача 5. Площадь учебной аудитории института 50 м², высота 4 м², число занимающихся студентов 45 человек. Исследования параметров микроклимата к концу занятий показали: температура воздуха +25°C, относительная влажность воздуха 70%, содержание C02 — 0,21%. Аудитория оборудована приточно-вытяжной вентиляцией. Дайте экологическую оценку параметров микроклимата и работы системы вентиляции.

Задача 6. Торговый зал, площадью 50 м^2 , освещается 10 лампами накаливания по 200 Bt (20 люминесцентными лампами по 40 Bt). Рассчитайте искусственную освещенность в данном торговом зале.

Задача 7. В кинозале, оборудованном системой приточно-вытяжной вентиляции, в зимнее время года к концу сеанса температура воздуха $+18^{\circ}$ С, относительная влажность 60%, содержание $C0_2$ — 0,09%. Дайте экологическую оценку работы вентиляции.

Задача 8. В жилом доме функционирует система централизованного водяного отопления. Температура воздуха в большинстве обследованных квартир составляет +19°C, колебания температуры в течение дня не превышают ± 3 °C. Относительная влажность воздуха 51%, скорость движения воздуха 0,15 м/с. Дайте экологическую оценку работы системы отопления и параметров микроклимата.

Задача 9. В зимний период температура воздуха в жилом помещении +25°С, относительная влажность воздуха 55%, скорость движения воздуха 0,1 м/с. Оцените параметры микроклимата в жилом помещении, дайте рекомендации по их оптимизации.

Задача 10. Температура воздуха в детском саду в зимнее время года составляет +20°C, относительная влажность 25%, скорость движения воздуха 0,3 м/с. Оцените параметры микроклимата в детском саду. Дайте рекомендации по их оптимизации.

Тема № 3. Химическое загрязнение почв города

Цель работы: получение практических навыков определения показателей химического загрязнения почв города.

Материалы и оборудование: микрокалькулятор

Задание: определить степень опасности загрязнения городских почв; установить какие загрязнители вносят наибольший вклад в суммарный показатель загрязнения. Охарактеризовать выявленные геохимические аномалии, установив, какие загрязнители представляют наибольшую

опасность для экосистем и здоровья человека. Данные полевых наблюдений представлены в табл. №№ 20, 21.

Таблица 20 Варианты заданий для оценки степени опасности загрязнения почв (указана концентрация загрязнителей, мг/кг)

	Вариант	1	2	3	4	5	6	7
1	HS	0,69	12,5	96,2	2,5	63,2	23,0	1,3
 1 0н	HCO ₃	0,21	1,3	1,4	520,6	25,6	2,6	516,3
Район	Cl	32,4	25,5	45,6	10,8	112,3	65,2	25,6
	SO ₄	0,01	1,2	65,2	1,5	64,2	18,9	54,5
	Zn	0,002	63,3	3,2	15,6	15,2	42,0	1,9
	NH ₃	0,5	10,5	12,2	10,5	2,6	15,2	12,3
	NO ₃ -	0,13	2,6	13,6	5,6	21,1	63,2	8,0
	Вариант	8	9	10	11	12	13	14
	HS	52,0	0,2	8,5	25,6	65,2	50,5	51,3
	НСО3	52,3	518,5	365,2	89,6	56,2	46,9	36,8
	Cl	69,5	18,8	65,2	16,5	45,2	20,2	25,3
	SO ₄	12,3	1,5	10,5	12,1	33,2	30,6	28,5
	Zn	22,6	17,6	56,2	25,6	65,5	24,7	21,4
	NH ₃	16,2	17,5	25,2	12,5	52,5	41,5	48,0
	NO ₃ -	32,2	35,8	26,6	20,1	28,7	29,9	30,5
Bap	иант	1	2	3	4	5	6	7
1 2	HS	0,67	20,0	109,5	3,8	60,2	15,2	1,6
Район	НСО3	0,21	1,2	2,8	650,0	30,9	13,8	319,6
Pai	Cl	7,3	13,6	42,8	12,6	108,2	35,9	30,2
	SO ₄	0,005	3,6	36,2	2,3	35,6	28,5	62,5
	Zn	0,001	56,3	2,5	21,2	15,2	96,0	12,5
	NH3	0,7	15,6	10,0	16,6	3,0	19,8	65,6
	NO ₃ -	0,005	12,8	23,3	7,0	14,2	90,5	16,3
	Вариант	8	9	10	11	12	13	14
	HS	117,8	0,1	14,5	36,9	58,9	35,5	39,5
	НСО3	69,0	540,2	590,5	98,5	182,5	21,5	23,6
	Cl	58,5	10,6	35,8	22,5	56,5	58,7	28,4
	SO ₄	12,0	2,3	12,5	10,4	39,1	52,1	100,2
	Zn	18,6	24,2	46,5	39,0	69,1	58,4	52,9
	NH3	15,3	12,6	32,6	19,9	40,2	29,6	23,8
	NO ₃ -	11,6	12,0	12,3	46,8	18,8	18,7	14,6
Bap	иант	1	2	3	4	5	6	7
13	HS	0,67	11,4	100,5	3,8	93,4	9,9	1,5
Район	НСО3	0,21	1,2	1,8	690,4	56,2	10,2	465,5
Pai	Cl	19,3	16,3	52,3	11,6	92,0	40,6	29,3
	SO ₄	0,004	2,5	66,3	1,0	60,0	65,2	66,5
	Zn	0,001	58,9	2,8	18,5	15,4	33,0	1,6
	NH3	0,3	19,2	9,6	14,0	3,0	56,6	42,2

	NO3	3-	0,004	12,5	4,5	7,0	18,9	77,8	14,9
			8	9	10	11	12	13	14
	HS		99,5	0,1	14,8	30,5	58,6	57,4	53,8
	HCO	D 3	44,7	538,0	589,6	102,0	130,6	38,4	84
	Cl		57,9	9,6	40,5	15,3	58,9	14,8	13,2
	SO ₄		12,5	1,0	16,8	12,3	45,8	10,5	9,8
	Zn		13,5	16,5	50,8	32,1	78,0	12,8	54,2
NH3		22,0	10,0	18,8	8,8	42,1	26,3	54	1,7
NO ₃	-	9,9	8,0	12,3	58,1	29,6	3,6	5	,8

Таблица

21

Варианты заданий для характеристики геохимических аномалий

Вещ-ва				Вариант	Ы		
	1	2	3	4	5	6	7
Pb	824*	2070	1050	1200	1680	2560	882
	103	230	120	150	240	320	
							98
Zn	2080	715	1500	992	2765	2835	935
	200		150		197	270	
		65		124			85
Ti	1040	576	2040	1275	2432	2244	1044
	65		102	85	152	132	
		36					58
Cu	840	1050	1712	750	960	1368	1273
	105	150	214	, , ,		152	
				100	120		134
V	<u>600</u> 75	832	290	805	1056	963	1045
•	<u>000</u> 70	052	270	002	132	702	10.0
		104	58	115		107	95
Ga	2160	1800	1840	1648	3315	3072	2891
Ou .	450	360	230	412	663	512	2071
	120						413
Cr	1200	2970	1080	1484	1480	1728	2030
Ci	150	330	180	212	185	192	2030
	150						203
	8	9	10	11	12	13	14
Pb	<u>956</u>	1472	3020	2114	1172	3070	2158
10	136	184	172	302	124	142	2130
	130						402
Zn	1764	1944	2834	1104	1954	2844	5104
211	147	162	218	96	172	218	3101
							46
Ti	3990	3240	2250	2192	3280	2270	2292
11	210	118	150	137	148	140	22)2
							147
Cu	<u>665</u> 95	1136	1143	904	1456	1113	974
Cu	<u>005</u> 75	142	127	70 1	144	117) I T
				113			123

V	<u>602</u> 86	1088	1656	1071	1089	1654	1971
		136	184	102	174	180	
							107
Ga	<u>1540</u>	2345	1350	2744	2347	1359	2584
	385	469	525	392	447	558	
							396
Cr	1505	1568	1683	2255	1748	1671	2259
	215	196	187	205	176	112	
							207

Прим.: * – в числителе – накопление в почве геохимических аномалий веществ техногенного происхождения, т; в знаменателе – площадь аномалий, км².

Ход работы:

1Описать методику определения уровня опасности загрязнения территории города и оценки гехимических аномалий.

23а фоновые значения концентрации при расчёте суммарного показателя загрязнения принять данные табл. 22.

Таблица 22 Фоновые концентрации загрязняющих веществ для расчёта суммарного показателя загрязнения, мг/кг

Вещество	Фоновая	Вещество	Фоновая
	концентрация		концентрация
Гидрокарбонаты	510	Нитраты	15
Хлориды	19,9	Гидросульфиды	107
Аммоний	11	Цинк	33
Сульфаты	45	Медь	28

3Рассчитать коэффициенты концентрации химических элементов в почвах трёх районов города, для каждого района определить суммарный показатель загрязнения Zc.

4Провести сравнительный анализ химического загрязнения почв районов. Сделать вывод.

5Охарактеризовать геохимическое аномалии на урбанизированной территории по показателям абсолютного и относительного накопления. За фоновые значения концентрации загрязнителей принять данные таблицы 23.

Таблица 23 Фоновые концентрации загрязняющих веществ для расчёта характеристик геохимических аномалий, $\tau/\kappa m^2$

Вещество	Фоновая концентрация	Вещество	Фоновая концентрация
Свинец	0,001	Ванадий	0,01
Цинк	0,005	Галлий	0,003
Титан	0,457	Хром	0,02
Медь	0,002	Ртуть	0,0008

Результаты расчёта оформить в виде следующей таблицы:

Элемент	S анома- лии	Техногенная составляюща я элементов, т	Фоновая концентрац ия	ПАН, т/км ²	ПОН

6Выполнить ранжирование элементов по величине удельного вклада в загрязнение городских почв, а также по величине опасности для здоровья человека, определяемой показателем относительного накопления.

Сделать вывод о наиболее опасных в данных условиях загрязнителях.

Тема № 4. Оценка опасности загрязнения городского воздуха промышленными предприятиями и автотранспортом

Цель работы: получение практических навыков определения степени опасности предприятия, автотранспорта, дороги и территориального производственного комплекса.

Материалы и оборудование: микрокалькулятор

Задание: рассчитать категорию опасности территории, включающей промышленное предприятие и автомобильную дорогу.

Ход работы:

- 1. Описать методику рассчёта категории опасности предприятия и автотранспорта.
- 2. Выполнить расчет категории опасности предприятия. Результаты должны включать расчеты КОВ для каждого вещества, таблицу с результатами по ранжированию выбросов предприятия по КОВ, расчет КОП (табл. 24), и массе выбросов.

Результаты ранжирования загрязняющих веществ по массе выбросов оформить в виде таблицы:

Таблица №

Рошоство	Macca	н выбросов	Ранг	Продируатио
Вещество	т/га	%	Ганг	Предприятие
Вещество 1			1	
Вещество 2			2	
Всего				

Результаты ранжирования загрязняющих веществ по категории опасности оформить в виде таблицы:

Таблица №

	Характе	Характеристика выбросов в атмосферу					
Вещество	Значені	ия КОВ	Down				
	м ³ /с	%	Ранг				
Суммарный по							
предприятию							
Вещество 1			1				
Вещество 2			2				

3. Рассчитать массу загрязняющих веществ, выбрасываемых автомобильным транспортном на данной улице. Результаты оформить в виде таблицы «Количество загрязняющих веществ, выбрасываемое автотранспортом на улице Н»:

Таблица №

IPI	Период исследования (зима, весна, лето, осень)										
те улит	Тип автомобиля	Bı	Выбросы разных веществ по сезонам (т/сезон)					Суммарный выброс,			
азвание	автомооили	CO	СН	NOx	SO ₂	Pb	Сажа	т/сезон			
[a3B	Легковые										
	Грузовые										
	Автобусы										
	Всего										

4. Рассчитать коэффициент опасности автотранспорта. Результаты оформить в виде таблицы «Значения категории опасности вещества для различных видов автотранспорта».

Таблица №

		,				
Попиол	исследования	(DIAMA	DACIIO	ΠΩΤΩ	OCOUL)	

	Тип	Тип Значения КОВ, м ³ /с						КОА, м ³ /с
<u> 1</u> PI	автомобиля	CO	СН	NOx	SO ₂	Pb	Сажа	м ³ /с
ЛИІ	Легковые							
Название улицы	Грузовые							
ван	Автобусы							
Наз	Всего							

- 4. Рассчитать показатели пылеобразования на дороге и вычислить коэффициент опасности улицы.
- 5. Рассчитать категорию опасности территории, включающей данное предприятие и автомобильную дорогу (КОГ).
 - 6. Сделать вывод.

Таблица 24 Варианты заданий к практической работе 3 для расчёта КОП

Вещества	Macca	Вещества	Macca	Вещества	Macca
	выбросов,		выбросов,		выбросов,
	т/год		т/год		т/год
1	2	3	4	5	6
Вариан	т 1	Вари	ант 2	Вариан	т 3
NO_2	3956,3	NO ₂	3039,0	NO_2	566,2
SO_2	2075,0	NO ₂	494,0	SO ₂	20642,1
CO_2	7551,07	CdO	0,005	CO ₂	33427,4
Пыль (зола)	0,19	SO_2	405,0	H ₂ S	173,1
Пыль (цемент)	0,88	NO ₂	1503,0	Бензол	841,1
CdO	0,0015	Fe ₂ O ₃	0,763	CaC ₂	100,1
Вариан	т 4	Вари	ант 5	Вариан	т 6
NO_2	1118,1	NO ₂	928,1	NO_2	213,5
SO_2	1744,07	H ₂ S	0,003	SO ₂	11,7
CO ₂	1002,1	CO ₂	364,2	CO ₂	800,2
H ₂ S	7,3	SO_2	20,8	Бензол	1238,3
Стирол	102,1	NH ₄	0,156	Пыль (цемент)	0,3
Этилбензол	85,3	NO	4002,4	H ₂ S	0,02

Вариант	r 7	Вариант 8	3	Вариант 9		
NO_2	186,0	NO_2	10,1	NO ₂	57,7	
SO_2	2,7	SO ₂	259,3	SO ₂	11,6	
CO_2	551,7	CO_2	82,1	CO ₂	58,6	
Толуол	5,3	H_2S	0,3	Пыль (зола)	0,32	
Бензол	0,88	Бензол	6,7	Бензол	21,7	
HNO ₃	12,2	Этилбензол	1,7	Этилбензол	0,9	
Вариант	10	Вариант 11		Вариант	12	
NO ₂	31,1	NO ₂	21,8	NO ₂	127,8	
SO ₂	0,5	SO ₂	0,8	SO ₂	16,51	
CO_2	97,9	CO_2	65,2	CO ₂	626,8	
Пыль (цемент)	122,6	Пыль (цемент)	44,2	Пыль (цемент)	1,03	

Формальдегид	0,21	Пыль (зола)	44,7	Бензол	310,2
CdO	0,02	Бензол	2,0	Толуол	1,5
Вариант	13	Вариант 1	4	Вариант	15
NO ₂	7530,1	NO ₂	58,3	NO ₂	12,1
SO_2	10630,1	SO_2	547,3	SO_2	1589,5
1	2	3	4	5	6
CO_2	80038,2	H_2S	5,4	CO ₂	39,47
H_2S	157,1	CO_2	155,3	H ₂ SO ₄	16,5
Пыль (зола)	558,3	Пыль (цемент)	235,0	Пыль (цемент)	70,55
Параксилол	1166,1	Нафталин	131,1	Бензол	12,1

Таблица 25 Варианты заданий к практической работе 3 для рассчёта **КОУ**

№ Bap.	TC	Интенс	Интенсивность движения по сезонам					
		Зима	Весна	Лето	Осень	улицы, м		
1	2	3	4	5	6	7		
	Легковые	950	960	1000	910			
1	Грузовые	100	105	135	80	8500		
	Автобусы	50	65	85	20			
	Легковые	1060	1000	1100	960			
2	Грузовые	100	130	150	190	4500		
	Автобусы	30	100	80	40			
	Легковые	25	34	45	39			
3	Грузовые	12	10	15	17	3000		
	Автобусы	8	8	4	6			
	Легковые	350	420	510	480			
4	Грузовые	50	48	59	53	5000		
	Автобусы	11	11	15	11			
	Легковые	95	106	115	101			
5	Грузовые	22	25	28	27	5500		
	Автобусы	10	11	9	10			
	Легковые	600	620	700	680			
6	Грузовые	110	150	125	200	6500		
	Автобусы	25	40	45	40			

Продолжение табл. 25

1	2	3	4	5	6	7
	Легковые	1180	1310	1380	1090	
7	Грузовые	230	140	330	190	2500
	Автобусы	90	100	110	100	
0	Легковые	950	1050	860	1030	2500
8	Грузовые	320	310	380	400	3500

	Автобусы	140	180	220	150	
	Легковые	985	955	1010	945	
9	Грузовые	220	130	310	150	5000
	Автобусы	60	80	90	75	
	Легковые	35	40	65	45	
10	Грузовые	15	15	25	20	3500
	Автобусы	5	10	15	10	
	Легковые	13	15	18	14	
11	Грузовые	7	6	5	9	2500
	Автобусы	2	4	5	3	
	Легковые	90	110	125	115	
12	Грузовые	15	20	20	25	4000
	Автобусы	10	15	10	15	
	Легковые	85	55	95	60	
13	Грузовые	25	30	35	25	5500
	Автобусы	15	20	15	25	
	Легковые	110	120	125	120	
14	Грузовые	35	40	45	25	4500
	Автобусы	20	25	35	25	
	Легковые	1020	1050	1100	980	
15	Грузовые	200	110	300	160	4000
	Автобусы	80	90	100	90	

Тема № 5. Городские сточные воды

Цель работы: получение практических навыков расчета общего объёма поверхностного стока и годового выноса веществ с городской территории.

Материалы и оборудование: микрокалькулятор, ситуационный план или таблицы данных

Задание: рассчитать сток воды, поступающей от различных источников природного и техногенного характера, а также объём содержащихся в ней веществ.

Ход работы:

- 1. Описать методику рассчёта поверхностного стока и годового выноса веществ с городской территории.
- 2. Выполнить расчет значений коэффициента поверхностного стока атмосферных осадков для всей городской территории с учётом агрегатного состояния осадков (табл. 26) и видов подстилающей поверхности (таблица 27).

- 3. Выполнить расчет значений коэффициента поверхностного стока поливомоечных сточных вод для города с данной площадью.
- 4. Определить общий объём водного поверхностного стока с городской территории за год.
- 5. По представленным данным о концентрации веществ в сточных водах (табл. 3) взвешенных веществ, нитратов и жиров определить общий объём стока этих веществ с городской территории.

Таблица Агрегатное состояние и количество осадков, выпадающих на территорию города

_												
Вид осадков		Снег		Дождь								
Месяцы	1	2	3	4	5	6	7	8	9			
Количество	45	50	52	63	55	53	56	46	35			
Месяцы	10	11	12									
Количество	39	38	40									

. Таблица 27 Площадь видов подстилающей поверхности городской территории, κm^2

Ка	атегория							Вари	анты			Варианты											
тер	ритории	1	2	3	4	5	6	7	8	9	10	11	12	13	14								
200	TO COLLINA IO	85	56	63	55	113	41	96	215				70	55	33								
	троенные	0.5	30	03	33	113	41	90	213	123	312	90	70	33	33								
	ритории		1.0		10			- 1		0.0	2		2.5	10	10								
He	вастроен.	44	12	35	12	56	15	64	25	89	256	56	26	12	12								
тер	ритории																						
Пар	оки,	2	2	10	2	23	2	8	16	4	52	5	4	2	1								
гра	вийные																						
пок	рытия																						
	Водонепро	они	12	22	18	22	78	25	52	23	55	186	22	56	22	16							
	цаемые																						
	поверхнос	ти																					
	Грунтовые		6	5	16	12	18	2	13	10	18	23	13	4	12	1							
	поверхнос																						
	Газоны,		13	23	35	8	12	19	56	59	53	97	13	43	8	9							
	зелёные																						
	насаждени	RI																					
	Хвойный.	пес	20	12	5	1	52	2	13	46	2	13	10	12	1	2							
	Лиственни	ый	12	1	3	5	33	2	55	15	8	25	5	6	5	3							
	лес																						

Таблица 28

26

Концентрация веществ в сточных водах, мг/л

Вещество	Варианты
----------	----------

		1		1	r	1	r	1	r	1	1	r		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	Дождевые воды													
Взвешенные	66	56	79	85	46	59	38	56	84	75	65	42	38	86
вещества														
Нитраты	50	23	24	21	26	25	28	30	21	16	18	16	14	19
Жиры	2,0	1,8	1,4	1,5	2,5	1,9	1,9	3,6	2,5	1,4	1,0	0,5	0,9	0,6
					Сне	еговы	е вод	Ы	I.			l		
Взвешенные	52	63	54	89	25	36	34	29	52	47	39	41	43	50
вещества														
Нитраты	8	15	24	21	18	17	16	12	17	14	18	16	13	12
Жиры	0,1	0,3	0,5	0,1	0,3	0,2	0,8	0,9	0,4	0,6	0,4	0,7	0,2	0,5
				Γ	Іолив	омоеч	ные	воды						
Взвешенные	11	95	98	113	125	162	120	95	105	120	77	82	93	28
вещества	0													
Нитраты	23	12	16	26	23	16	17	21	34	50	42	12	31	24
Жиры	2,2	1,6	2,8	2,5	2,1	0,4	0,9	2,6	3,6	3,4	2,9	3,5	1,8	2,6

Тема № 6. Расчёт шумового загрязнения городской территории

Цель работы: освоение методики создания шумовой карты на основе расчётных данных.

Материалы и оборудование: микрокалькулятор, план участка городской территории, чертёжные принадлежности,

Задание: определить пространственное распределение уровня шума от автомобильных магистралей на участке городской территории.

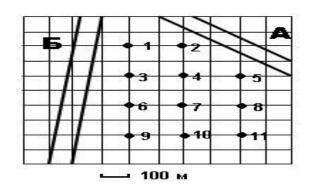


Рис. 5. План участка города для расчёта шумового загрязнения Прим.: A, Б – магистрали; 1, 2, – расчётные точки

Ход работы:

- 1. Описать методику расчёта шумовой характеристики транспортного потока и ожидаемого эквивалентного уровня звука.
- 2. Расчитать уровень шума для расчётных точек на территории изображённой на рис. 5 по представленным данным (табл. 29). Результаты расчёта зарисовать в виде плана занести в таблицу:

Уровень	Уровень	Суммарный
•	•	уровень
магистрали	магистрали Б	шума
11	В	
	Уровень шума от магистрали А	шума от шума от

- 3. Провести интерполяцию и вычертить карту шумового загрязнения территории в изолиниях в масштабе 1:10000. При необходимости уточнения изолиний провести расчёты шума на дополнительных точках.
 - 4. Сделать вывод.

Таблица 29

Варианты заданий к практической работе 6													
№ Bap.	Магистраль	Q, ед./ч	Уклон, %	Покрытие	r, %	V, км/ч	В, м	Кол-во полос					
1	A	5200	4	АБ	20	45	30	2					
1	Б	4100	6	ЦБ	5	30	45	2					
2	A	6400	2	АБ	5	60	40	4					
2	Б	9800	4	ЦБ	0	55	55	4					
3	A	5200	4	АБ	5	45	35	4					
3	Б	4500	10	АБ	20	35	45	2					
4	A	3600	6	АБ	5	40	30	2					
4	Б	2800	8	ЦБ	5	45	30	4					
6	A	4100	4	ЦБ	40	60	35	2					
U	Б	5700	2	АБ	5	65	40	4					
7	A	5900	6	ЦБ	20	65	40	4					
/	Б	2600	6	ЦБ	5	65	50	2					
8	A	3200	6	АБ	40	55	45	4					
O	Б	4200	4	АБ	40	45	35	2					
9	A	2100	4	АБ	20	50	40	2					
9	Б	5100	6	ЦБ	20	60	40	4					
10	A	3900	4	АБ	40	60	45	4					
10	Б	3200	2	ЦБ	20	55	35	4					
11	A	5200	8	ЦБ	5	65	35	4					
11	Б	4200	10	АБ	5	55	50	2					
12	A	1800	8	АБ	5	50	50	4					
12	Б	2500	2	АБ	20	45	34	4					
13	A	3400	8	ЦБ	50	40	40	4					

	Б	2900	6	АБ	5	35	45	2
14	A	3600	10	АБ	5	45	40	4
14	Б	5600	2	ЦБ	0	55	45	4
1.5	A	4800	4	АБ	20	40	35	2
13	Б	2700	10	ЦБ	5	60	40	4

Тема № 7. Полигоны ТБО и их влияние на окружающую среду

Цель работы: получение практических навыков определения основных показателей полигонов твёрдых бытовых отходов, характеризующих степень из воздействия на окружающую среду.

Материалы и оборудование: микрокалькулятор

Задание: рассчитать площадь полигона твёрдых бытовых отходов и объём выделяющегося при разложении отходов биогаза в целом и по компонентам.

Ход работы:

- 1 Описать методику рассчёта площади полигона и объёма биогаза
- 2 Выполнить расчет площади полигона по представленным данным (табл. 30).

Таблица 30 Варианты заданий к практической работе 7

Показатели	Варианты													
Hokusuresin	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Расчётный срок эксплуатации, лет	15	20	30	25	30	30	25	20	15	30	30	30	25	30
Численность														
населения,														
тыс.чел.: – в														
первый год – в														
последний год	58	75	105	84	59	111	35	26	45	52	34	47	86	95
	61	79	112	88	65	116	39	30	48	61	41	52	92	103
Накопление	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,3	0,3	0,2	0,2	0,2	0,2	0,24
отходов в	8	5	9	4	6	5	9	1	2	4	7	6	8	
первый год,														
т/чел.														
Macca	5	12	12	12	20	22	6	14	14	20	4	12	13	6
каткауплотнителя,т														
Проектируемая	25	15	25	30	50	55	30	18	20	55	23	30	16	26
высота, м														

Содержание	40	62	60	59	65	57	49	69	72	75	63	68	57	52
органической														
составляющей, %														
Содержание в														
органической														
составляющей														
веществ, % -														
жиров														
– углеводов														
– белков	12	16	25	18			17	22		14	21	20	16	18
OCSIROD	35	42	38	24	31	22	27	21	29	19	18	22	26	20
	53	42	37	58	43	44	56	57	59	67	61	58	58	62
Влажность	10	12	16	12	11	18	16	14	12	8	5	11	14	12
отходов, %														

 Таблица 31

 Среднемесячные температуры воздуха в районе полигона

Месяцы	1	2	3	4	5	6	7	8	9	10	11	12
Температура, ⁰ С	-10	-9	-4	+4	+12	+16	+18	+16	+10	+4	-2	-8

- 3 Рассчитать удельный выход биогаза за период его активной стабилизированной генерации при метановом брожении и количественный выход биогаза за год.
- 4 Определить плотность выделяющегося биогаза, если концентрации его компонентов, полученные анализами, следующие (мг/м³): $CH_4 1,25$; $CO_2 0,78$; $N_2 0,02$; $H_2S_3 0,01$.
- 5 Рассчитать весовое процентное содержание компонентов и их удельные массы, максимальные разовые выбросы и валовые выбросы. Результаты занести в таблицу:

Компонент	Концентрация в биогазе, мг/м ³	Весовое содержание, %	Удельная масса, кг/т отходов в год	Максимальные разовые выбросы, г/с	Валовые выбросы, т/год
Метан					
CO ₂					
Азот					
Сероводород					

6 Сделать вывод.

Задача № 1 СБОР ТБО В РАЙОНЕ ГОРОДА

Решение задачи № 1 включает расчет норм накопления ТБО за пятилетний период по годам; расчет объема и массы образования ТБО в городском районе; расчет сбора вторичного сырья через сеть приемных пунктов.

Исходные данные для решения задачи № 1

1. Структура застройки городского района приведена в табл. 32. В общественных зданиях располагаются: школы, детские сады, библиотеки, клубы, техникумы, вузы, гостиницы, предприятия бытового обслуживания, учреждения,

научно-исследовательские институты, магазины продовольственные и промышленные, рынки, больницы.

- 2. Нормы накопления твердых бытовых отходов, образующихся:
 - от благоустроенных жилых зданий, $-1,07 \text{ м}^3/\text{чел.}$;
 - от неблагоустроенных жилых зданий коммунального фонда, -1,5 м 3 /чел.;
 - от зданий индивидуальной жилой застройки, $-2.0 \text{ м}^3/\text{чел.}$;
 - от общественных зданий, -40 % от нормы накопления жилых зданий.
 - 3. Нормы накопления ТБО по объему возрастают ежегодно на 1%.
 - 4. Процент извлечения вторсырья в приемных пунктах составляет 40 %.
 - 5. Плотность ТБО от жилых и общественных зданий составляет 190-210 $\kappa \Gamma/M^3$. Средняя плотность ТБО равна 210 $\kappa \Gamma/M^3$, или 0,2 τ/M^3 .
 - 6. Морфологический состав ТБО и прогноз его изменения через 5 лет приведены в табл. 34.
 - 7. Один пункт вторичного сырья обслуживает 15000 человек.

Таблица 32 Структура застройки городского района

№ вар	Благоустроенные жилые здания		жилы комму ф	устроенные не здания гнального онда	Здания индивидуа льной жилой застройки	Общественные здания	
			J	Количество			
	зданий,	жителей,	зданий,	жителей,	зданий,	жителей	зданий,
	шт.	чел.	шт.	чел.	шт.	, чел.	шт.
1	270	81000	390	35100	1180	7050	369
2	240	72000	450	40500	12000	72000	553
3	320	97500	0	0	290	1750	298
4	360	108000	250	22500	2500	12000	427
5	420	126000	150	13500	3000	17500	471
6	265	79400	370	32050	1100	6890	355
7	300	90170	0	0	270	1620	275
8	160	48750	0	0	150	910	149

Таблица 34 Морфологический состав ТБО (в % по массе)

Компоненты		Сезон	За год	За 5 лет		
Ttommonen in	Зима	Весна	Лето	Осень		
Бумага, картон	19,3	17,1	26,3	20,4	20,8	24,0

Черный металл	8,3	8,2	7,3	5,6	7,4	5,0
Цветной металл	1,2	1,1	0,9	0,8	1,0	0,75
Стекло	9,2	11,7	7,4	7,1	8,9	8,0
Пластмасса	4,0	4,9	4,1	3,8	4,2	6,0
Пищевые отходы	26,6	25,9	24,1	37,9	28,6	28,0
Текстиль	7,6	6,6	4,5	6,0	6,2	6,0
Кожа, резина	3,7	5,9	6,5	3,6	4,9	3,0
Дерево, листья	5,0	5,5	5,8	4,3	5,1	5,0
Кости	6,9	5,2	4,6	3,9	5,1	5,0
Камни	1,6	1,3	3,8	0,7	1,9	2,0
Отсев	6,6	6,6	4,7	5,9	5,9	7,25

Порядок решения задачи № 1

1. Рассчитать нормы накопления ТБО от жилого фонда городского района за пятилетний период по годам. Результаты расчетов занести в табл. N1. Таблица N1 Увеличение норм накопления ТБО, м³/чел.

Жилой фонд	Годы					
жилоп фонд	1-й 20	2-й 20	3-й 20	4-й 20	5-й 20	
Благоустроенные						
здания						
Неблагоустроенные						
здания						
Здания						
индивидуальной						
застройки						

- 2. Рассчитать объем и массу ТБО, образующихся в городском районе.
- 2.1. Рассчитать объемы образования ТБО по годам, исходя из количества жителей (см. табл. 32) и норм накопления отходов (см. п. 2). Объемы отходов от общественных зданий рассчитать как произведение объема отходов от всего жилого фонда на 0,4 (40 %). Результаты расчетов занести в табл. N2.

Таблица N2

Объем ТБО от жилых и общественных зданий, м³

	Годы					
Показатель	1-й	2-й	3-й	4-й	5-й	
	20	20	20	20	20	
Отходы: от благоустроенных						
жилых зданий						
неблагоустроенных жилых зданий						
зданий индивидуальной жилой застройки						
всего жилого фонда						

общественных зданий			
Всего отходов			

2.2. Рассчитать массу ТБО, образующихся от жилых и общественных зданий. Результаты расчетов занести в табл. **N**3.

Таблипа N3

Таблина N4

Масса ТБО от жилых и общественных зданий, т

	Годы					
Показатель	1-й	2-й	3-й	4-й	5-й	
	20	20	20	20	20	
Отходы:						
от благоустроенных жилых зданий						
неблагоустроенных жилых зданий						
зданий индивидуальной жилой застройки						
общественных зданий						
Всего от жилых и общественных зданий						

- 3. Рассчитать возможный сбор вторсырья через сеть приемных пунктов.
- 3.1. Рассчитать численность населения городского района.
- 3.2. Рассчитать ориентировочное количество приемных пунктов вторичного сырья (целое число).
- 3.3. Рассчитать массу твердых бытовых отходов M_{TEO} , из которых будет извлекаться вторичное сырье на одном приемном пункте. Для этого массу ТБО, образованных от жилых и общественных зданий в последнем году пятилетнего периода, разделить на число приемных пунктов.
- 3.4. Рассчитать массу вторичного сырья, собранного одним приемным пунктом. 40 % твердых бытовых отходов извлекается из них как вторичное сырье и направляется в приемные пункты. Масса отходов по отдельным компонентам их морфологического состава (см. табл. 34) рассчитывается как произведение M_{TEO} на долю компонента в отходах и на долю извлечения этого компонента из отходов. Например, масса макулатуры рассчитывается как $M_{TEO} * 0.24 * 0.4$ (т).

Результаты расчетов занести в табл. N4.

3.5. Рассчитать массу вторичного сырья, собранного всеми приемными пунктами. Результаты расчетов занести в табл. N4.

Сбор вторичного сырья приемными пунктами

Компоненты	Масса вторсырья, т		
вторичного сырья	Один приемный пункт	Все приемные пункты	

Макулатура	
Черный металл	
Цветной металл	
Стеклобой	
Пластмасса	
Всего	

3.6. Рассчитать массу и процентное содержание компонентов вторичного сырья в ТБО городского района, вывозимых на сортировку (оставшихся после сбора в приемных пунктах). Использовать данные вышеуказанных таблиц. Результаты расчетов занести в табл. N5.

Таблица N5 Содержание компонентов вторичного сырья в ТБО, вывозимых на сортировку

r	содержиние ком	nonentob broph in	ого сырыя в	T D O, D D D O S H M	ых на сортировку
	Компоненты	Mac	Масса вторсырья, т		
	вторичного сырь	я В ТБО от	В	в ТБО,	содержание
		жилых и	приемных	вывозимых	вторсырья в
		общественных	пунктах	на	ТБО,
		зданий		сортировку	вывозимых на
					сортировку, %
	Макулатура				
•	Черный металл				
•	Цветной металл				
-	Стеклобой				
	Пластмасса				
Вс	его				

3.7. Рассчитать процентное содержание ТБО, вывозимых на сортировку, в общей массе ТБО, собранных от жилых и общественных зданий (см. табл. N5).

3.8. Рассчитать массу ТБО от жилых и общественных зданий после сбора вторсырья, отправляемых на мусоросортировочные станции (МСС). Использовать данные вышеуказанных таблиц и результат расчета массы всех отходов, вывозимых на сортировку. Результаты расчетов занести в табл. N6.

Таблица N6 Масса ТБО от жилых и общественных зданий, отправляемых на МСС, т

		Жилые здания		
Жилые и				Общественные
общественные	благоустроенные	неблагоустроенные	индиви-	здания
здания			дуальной	здания
			застройки	

Задача № 2 ТРАНСПОРТИРОВКА ТБО

Решение задачи № 2 включает расчет количества контейнеров под отходы; расчет количества контейнерных площадок; расчет потребности мусоровозов. Все расчеты ведутся раздельно: для благоустроенного и неблагоустроенного жилья, индивидуальной жилой застройки и общественных организаций.

Исходные данные для решения задачи № 2

- 1. Вывоз отходов производится ежедневно.
- 2. Вместимость контейнеров под отходы составляет 0,75 м³.
- 3. Все благоустроенные жилые здания имеют мусоропроводы.
- 4. Каждое общественное здание обеспечивается одним контейнером.
- 5. На одной площадке устанавливается 3 контейнера под отходы.
- 6. Отходы вывозят мусоровозами МКМ-2 и/или МКБ 21 (прил. 1 и 2).

Техническая характеристика мусоровоза МКМ-2: полезный объем кузова $-10~{\rm M}^3$; масса вывозимого мусора $-4,5~{\rm T}$; коэффициент уплотнения мусора -2,8.

Техническая характеристика мусоровоза МКБ-21: полезный объем кузова -6.0 м^3 ; масса вывозимого мусора -2.2 т; коэффициент уплотнения мусора $-2.5 \cdot 7$. Количество рейсов мусоровоза в смену $-3 \cdot 7 \cdot 7 \cdot 10^{-3}$.

8. Расстояние до МСС составляет не более 16 км.

Порядок решения задачи № 2

1. Рассчитать количество контейнеров под отходы.

Количество контейнеров K (шт.) определяется по формуле

$$K = \frac{1000 * M * \Pi * k_1 * k_2}{365 * B}$$

где M — масса отходов, собираемых в контейнеры, т; Π — периодичность удаления отходов; $k_1 = 1,25$ — коэффициент неравномерности наполнения отходами контейнеров; $k_2 = 1,05$ — коэффициент, учитывающий число контейнеров, находящихся в ремонте и резерве; B — вместимость контейнера, B=0,75*0,2=0,15T.

- 1.1. Рассчитать количество контейнеров под отходы: от благоустроенных жилых зданий; неблагоустроенных жилых зданий; зданий индивидуальной жилой застройки. Результаты расчетов занести в табл. 9.
- 1.2. Определить количество контейнеров под отходы от общественных зданий (равных числу зданий).
- 1.3. Рассчитать количество контейнеров под отходы для всего городского района. Результаты расчетов занести в табл. N7.

2. Рассчитать количество площадок для установки контейнеров под отходы: - от неблагоустроенных жилых зданий; - зданий индивидуальной жилой застройки; - общественных зданий; - всех жилых и общественных зданий городского района.

Результаты расчетов занести в табл. N7.

- 3. Рассчитать количество мусоровозов для вывоза отходов.
- 3.1. Рассчитать массу отходов, вывозимых за год одним мусоровозом. Для этого массу отходов, вывозимых мусоровозом, умножить на количество рейсов в смену и на 365 дней.
- 3.2. Рассчитать количество мусоровозов с учетом коэффициента резерва выпуска автомобилей на линию; $k_3 = 1,3$. Результаты расчетов занести в табл. N7.

Таблица N7 Количество контейнеров (шт.), площадок и мусоровозов

Показатель	Контейнеры	Площадки	Мусоровозы
Отходы:		-	
от благоустроенных жилых зданий			
неблагоустроенных жилых зданий			
зданий индивидуальной жилой			
застройки			
общественных зданий			
Всего для городского района			

Задача № 3 СОРТИРОВКА И ОБЕЗВРЕЖИВАНИЕ ТБО

Решение задачи № 3 включает расчет количества мусоросортировочных станций МСС в городском районе; разработку схемы обезвреживания ТБО всего города: определение числа и вида инженерных сооружений по сортировке, переработке и захоронению ТБО.

Исходные данные для решения задачи № 3

- 1. Извлечение вторичного сырья на МСС составляет 30 %.
- 2. Технико-экономические показатели МСС: производительность -100 тыс. т; капитальные вложения -56 млн руб.; эксплуатационные затраты -8,4 млн руб.
- 3. Массовая доля ТБО городского района (т) в общей массе отходов города представлена в табл. 35.

Таблица 35

Массовая доля ТБО городского района

Вариант	1	2	3	4	5	6	7	8
Массовая	0,13	0,19	0,10	0,15	0,16	0,12	0,09	0,06
доля ТБО								

4. Технико-экономические показатели мусороперерабатывающих заводов (МПЗ), мусоросжигательного завода (МСЗ) и полигона ТБО приведены в табл. 43.

Порядок решения задачи № 3

- 1. Рассчитать количество МСС в городском районе.
 - 1.1. Рассчитать массу компонентов вторичного сырья, извлеченного из ТБО на мусоросортировочных станциях (МСС). Для этого массу компонентов вторичного сырья в отходах, вывозимых на сортировку, умножить на долю их извлечения на МСС. Результаты расчетов занести в табл. **N8**.

Таблица 43 Показатели работы инженерных сооружений по обезвреживанию ТБО

Показатель	Ед.	МПЗ с	МП3	MC3	Полигон
	изм.	пиролизом			
Технология	-	Компостирование	Компостирование	Слоевое	Захоронение
обезвреживания		и пиролиз		сжигание	
Масса ТБО	тыс. т	80	120	150	150
переработки					
(захоронения)					
Отходы после	% от	5 (балласт) +	30	30 (зола и	-
переработки	массы	6 (зола и шлак)	(некомпостируемые	шлак)	
	ТБО		фракции)		
Срок	-	2 суток	2 суток	1 час	> 20 лет
обезвреживания					
Отчуждение ценных	га	8	8	4	8 - 120
земель					
Капитальные	млн.	502,6	552,0	1293,8	71,4
вложения	руб				
Уд. капит. вложен.	руб./т	6282,5	4600,0	8625,3	476,0
Эксплуатационные	МЛН	73,7	90,0	172,5	17,3
затраты	руб.				
Удельные	руб./т	921,2	750,0	1150,0	115,3
эксплуатационные					
затраты					

Таблица N8

Извлечение вторичного сырья на МСС

Компоненты	Масса вторсырья, т	Процентное содержание, %		
Макулатура				

Черный металл	
Цветной металл	
Стеклобой	
Пластмасса	
Всего	100

- 1.2. Рассчитать количество МСС в р-не (целое число). Расчеты вести исходя из производительности МСС.
- 1.3. Рассчитать массу ТБО р-на после удаления из них вторсырья на МСС.
- 2. Разработать схему обезвреживания ТБО в городе.
 - 2.1. Рассчитать для всего города ориентировочную массу вторсырья, извлекаемого на ММС, и массу ТБО, отправляемых (после МСС) на городские инженерные сооружения для их обезвреживания. При расчетах исходить из долевого содержания отходов р-на в общей массе ТБО от всего города.
 - 2.2. Рассчитать количество МСС для города (целое число). Расчеты вести исходя из производительности МСС.
 - 2.3. Определить количество и вид инженерных сооружений по обезвреживанию твердых бытовых отходов: МПЗ, МСЗ и полигонов. Исходить из технико-экономических показателей (см. табл. 11) и расчета материального баланса работы инженерных сооружений (см. табл. 44).

Таблица 44 Расчет материального баланса промышленной переработки и захоронения ТБО

Масса отходов, тыс. т	Варианты		
	1	2	
на полигон (2025 %)			
промышленную переработку (7580 %)			
МПЗ			
MC3			
полигон после МПЗ			
полигон после МСЗ			
Всего отходов на полигоне			

- 2.4. Разработать 2 варианта схемы обезвреживания ТБО города и выбрать наилучший вариант. В качестве критериев сравнения схем использовать: минимальные фин.затраты за 5 лет на внедрение инженерных сооружений; наименьшее количество отходов, подлежащих захоронению на полигоне.
- 2.5. Составить блок-схему алгоритма санитарной очистки района города.
- 2.6. Сделать предложения по организации управления сбором, сортировкой и обезвреживанием ТБО района города.

Литература

- 1. Васильченко, А. В. Почвенно-экологический мониторинг: учебное пособие / А. В. Васильченко. Оренбург: Оренбургский государственный университет, ЭБС АСВ, 2017. 282 с. ISBN 978-5-7410-1815-6. Текст: электронный // Цифровой образовательный ресурс IPR SMART: [сайт]. URL: https://www.iprbookshop.ru/78813.html
- 2. Хаустов, А. П. Экологический мониторинг: учебник для вузов / А. П. Хаустов, М. М. Редина. 3-е изд., перераб. и доп. Москва: Издательство Юрайт, 2024. 549 с. (Высшее образование). ISBN 978-5-534-16676-7. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/531471
- 3. Шамраев, А. В. Экологический мониторинг и экспертиза : учебное пособие / А. В. Шамраев. Оренбург : Оренбургский государственный университет, ЭБС АСВ, 2014. 141 с. Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. URL: https://www.iprbookshop.ru/24348.html
- 4. Экологический мониторинг : учебно-методическое пособие / составители В. Н. Ильина [и др.]. Самара : СамГУПС, 2021. 236 с. ISBN 978-5-8428-1176-2. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/332189
- 5. Экологический мониторинг и восстановление природных объектов. Практикум: учебное пособие / М. В. Киселев, С. Х. Хуаз, М. А. Ефремова, С. П. Мельников. Санкт-Петербург: Проспект Науки, 2020. 100 с. ISBN 978-5-906109-52-1. Текст: электронный // Цифровой образовательный ресурс IPR SMART: [сайт]. URL: https://www.iprbookshop.ru/80093.html